660 research outputs found

    Handwritten Arabic Documents Segmentation into Text Lines using Seam Carving

    Get PDF
    Inspired from human perception and common text documents characteristics based on readability constraints, an Arabic text line segmentation approach is proposed using seam carving. Taking the gray scale of the image as input data, this technique offers better results at extracting handwritten text lines without the need for the binary representation of the document image. In addition to its fast processing time, its versatility permits to process a multitude of document types, especially documents presenting low text-to-background contrast such as degraded historical manuscripts or complex writing styles like cursive handwriting. Even if our focus in this paper was on Arabic text segmentation, this method is language independent. Tests on a public database of 123 handwritten Arabic documents showed a line detection rate of 97.5% for a matching score of 90%

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Benchmarking of Embedded Object Detection in Optical and RADAR Scenes

    Get PDF
    A portable, real-time vital sign estimation protoype is developed using neural network- based localization, multi-object tracking, and embedded processing optimizations. The system estimates heart and respiration rates of multiple subjects using directional of arrival techniques on RADAR data. This system is useful in many civilian and military applications including search and rescue. The primary contribution from this work is the implementation and benchmarking of neural networks for real time detection and localization on various systems including the testing of eight neural networks on a discrete GPU and Jetson Xavier devices. Mean average precision (mAP) and inference speed benchmarks were performed. We have shown fast and accurate detection and tracking using synthetic and real RADAR data. Another major contribution is the quantification of the relationship between neural network mAP performance and data augmentations. As an example, we focused on image and video compression methods, such as JPEG, WebP, H264, and H265. The results show WebP at a quantization level of 50 and H265 at a constant rate factor of 30 provide the best balance between compression and acceptable mAP. Other minor contributions are achieved in enhancing the functionality of the real-time prototype system. This includes the implementation and benchmarking of neural network op- timizations, such as quantization and pruning. Furthermore, an appearance-based synthetic RADAR and real RADAR datasets are developed. The latter contains simultaneous optical and RADAR data capture and cross-modal labels. Finally, multi-object tracking methods are benchmarked and a support vector machine is utilized for cross-modal association. In summary, the implementation, benchmarking, and optimization of methods for detection and tracking helped create a real-time vital sign system on a low-profile embedded device. Additionally, this work established a relationship between compression methods and different neural networks for optimal file compression and network performance. Finally, methods for RADAR and optical data collection and cross-modal association are implemented

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore