1,142 research outputs found

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    IRS II: a framework and infrastructure for semantic web services

    Get PDF
    In this paper we describe IRS–II (Internet Reasoning Service) a framework and implemented infrastructure, whose main goal is to support the publication, location, composition and execution of heterogeneous web services, augmented with semantic descriptions of their functionalities. IRS–II has three main classes of features which distinguish it from other work on semantic web services. Firstly, it supports one-click publishing of standalone software: IRS–II automatically creates the appropriate wrappers, given pointers to the standalone code. Secondly, it explicitly distinguishes between tasks (what to do) and methods (how to achieve tasks) and as a result supports capability-driven service invocation; flexible mappings between services and problem specifications; and dynamic, knowledge-based service selection. Finally, IRS–II services are web service compatible – standard web services can be trivially published through the IRS–II and any IRS–II service automatically appears as a standard web service to other web service infrastructures. In the paper we illustrate the main functionalities of IRS–II through a scenario involving a distributed application in the healthcare domain

    Semantic Description, Publication and Discovery of Workflows in myGrid

    No full text
    The bioinformatics scientific process relies on in silico experiments, which are experiments executed in full in a computational environment. Scientists wish to encode the designs of these experiments as workflows because they provide minimal, declarative descriptions of the designs, overcoming many barriers to the sharing and re-use of these designs between scientists and enable the use of the most appropriate services available at any one time. We anticipate that the number of workflows will increase quickly as more scientists begin to make use of existing workflow construction tools to express their experiment designs. Discovery then becomes an increasingly hard problem, as it becomes more difficult for a scientist to identify the workflows relevant to their particular research goals amongst all those on offer. While many approaches exist for the publishing and discovery of services, there have been few attempts to address where and how authors of experimental designs should advertise the availability of their work or how relevant workflows can be discovered with minimal effort from the user. As the users designing and adapting experiments will not necessarily have a computer science background, we also have to consider how publishing and discovery can be achieved in such a way that they are not required to have detailed technical knowledge of workflow scripting languages. Furthermore, we believe they should be able to make use of others' expert knowledge (the semantics) of the given scientific domain. In this paper, we define the issues related to the semantic description, publishing and discovery of workflows, and demonstrate how the architecture created by the myGrid project aids scientists in this process. We give a walk-through of how users can construct, publish, annotate, discover and enact workflows via the user interfaces of the myGrid architecture; we then describe novel middleware protocols, making use of the Semantic Web technologies RDF and OWL to support workflow publishing and discovery

    Uniform resource visualization

    Get PDF
    Computing environments continue to increase in scale, heterogeneity, and hierarchy, with resource usage varying dynamically during program execution. Computational and data grids and distributed collaboration environments are examples. To understand performance and gain insights into developing applications that efficiently use system resources, performance visualization has proven useful. Performance visualization tools, however, often are specific to a particular resource at a certain level of the system, possibly with fixed views. Thus, they limit a user\u27s ability to observe a performance problem associated with multiple resources across system levels and platforms. To address this limitation, information integration is necessary. In this research, we propose a new performance visualization framework, Uniform Resource Visualization (URV), focusing on integration of performance information into system-level visualizations. The goal of URV research is to systemize the performance visualization of resources with reusable and composable visualizations

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    A review of the state of the art in Machine Learning on the Semantic Web: Technical Report CSTR-05-003

    Get PDF

    Artificial Intelligence: A Promised Land for Web Services

    Get PDF
    6 page(s

    A Framework for Semi-automated Web Service Composition in Semantic Web

    Full text link
    Number of web services available on Internet and its usage are increasing very fast. In many cases, one service is not enough to complete the business requirement; composition of web services is carried out. Autonomous composition of web services to achieve new functionality is generating considerable attention in semantic web domain. Development time and effort for new applications can be reduced with service composition. Various approaches to carry out automated composition of web services are discussed in literature. Web service composition using ontologies is one of the effective approaches. In this paper we demonstrate how the ontology based composition can be made faster for each customer. We propose a framework to provide precomposed web services to fulfil user requirements. We detail how ontology merging can be used for composition which expedites the whole process. We discuss how framework provides customer specific ontology merging and repository. We also elaborate on how merging of ontologies is carried out.Comment: 6 pages, 9 figures; CUBE 2013 International Conferenc

    Semantic annotation, publication, and discovery of Java software components: an integrated approach

    Get PDF
    Component-based software development has matured into standard practice in software engineering. Among the advantages of reusing software modules are lower costs, faster development, more manageable code, increased productivity, and improved software quality. As the number of available software components has grown, so has the need for effective component search and retrieval. Traditional search approaches, such as keyword matching, have proved ineffective when applied to software components. Applying a semantically- enhanced approach to component classification, publication, and discovery can greatly increase the efficiency of searching and retrieving software components. This has been already applied in the context of Web technologies, and Web services in particular, in the frame of Semantic Web Services research. This paper examines the similarities between software components and Web services and adapts an existing Semantic Web Service publication and discovery solution into a software component annotation and discovery tool which is implemented as an Eclipse plug-in

    Characterizing semantic web services

    Get PDF
    Semantic Web is an extension of the current web in which data contained in the web documents are machine-understandable. On the other hand, Web Services provide a new model of the web in which sites exchange dynamic information on demand. Combination of both introduces a new concept named Semantic Web Services in which semantic information is added to the different activities involved in Web Services, such as discovering, publication, composition, etc. In this paper, we analyze several proposals implementing Semantic Web Services. In order to describe them, we create a conceptual framework characterizing the main aspects of each proposal.Eje: I - Workshop de Ingeniería de Software y Base de DatosRed de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore