9,034 research outputs found

    Classical Knowledge for Quantum Security

    Get PDF
    We propose a decision procedure for analysing security of quantum cryptographic protocols, combining a classical algebraic rewrite system for knowledge with an operational semantics for quantum distributed computing. As a test case, we use our procedure to reason about security properties of a recently developed quantum secret sharing protocol that uses graph states. We analyze three different scenarios based on the safety assumptions of the classical and quantum channels and discover the path of an attack in the presence of an adversary. The epistemic analysis that leads to this and similar types of attacks is purely based on our classical notion of knowledge.Comment: extended abstract, 13 page

    Bicategorical Semantics for Nondeterministic Computation

    Full text link
    We outline a bicategorical syntax for the interaction between public and private information in classical information theory. We use this to give high-level graphical definitions of encrypted communication and secret sharing protocols, including a characterization of their security properties. Remarkably, this makes it clear that the protocols have an identical abstract form to the quantum teleportation and dense coding procedures, yielding evidence of a deep connection between classical and quantum information processing. We also formulate public-key cryptography using our scheme. Specific implementations of these protocols as nondeterministic classical procedures are recovered by applying our formalism in a symmetric monoidal bicategory of matrices of relations.Comment: 21 page

    Groupoid Semantics for Thermal Computing

    Full text link
    A groupoid semantics is presented for systems with both logical and thermal degrees of freedom. We apply this to a syntactic model for encryption, and obtain an algebraic characterization of the heat produced by the encryption function, as predicted by Landauer's principle. Our model has a linear representation theory that reveals an underlying quantum semantics, giving for the first time a functorial classical model for quantum teleportation and other quantum phenomena.Comment: We describe a groupoid model for thermodynamic computation, and a quantization procedure that turns encrypted communication into quantum teleportation. Everything is done using higher category theor

    Model checking quantum Markov chains

    Full text link
    Although the security of quantum cryptography is provable based on the principles of quantum mechanics, it can be compromised by the flaws in the design of quantum protocols and the noise in their physical implementations. So, it is indispensable to develop techniques of verifying and debugging quantum cryptographic systems. Model-checking has proved to be effective in the verification of classical cryptographic protocols, but an essential difficulty arises when it is applied to quantum systems: the state space of a quantum system is always a continuum even when its dimension is finite. To overcome this difficulty, we introduce a novel notion of quantum Markov chain, specially suited to model quantum cryptographic protocols, in which quantum effects are entirely encoded into super-operators labelling transitions, leaving the location information (nodes) being classical. Then we define a quantum extension of probabilistic computation tree logic (PCTL) and develop a model-checking algorithm for quantum Markov chains.Comment: Journal versio
    • …
    corecore