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Abstract

We propose a decision procedure for analysing security of quantum cryptographic protocols, combining an
algebraic logic rewrite system with an operational semantics for quantum distributed computations. We
apply our approach to reasoning about security properties of a recently developed quantum secret sharing
protocol.
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1 Introduction

Quantum communication is an inseparable part of quantum computing: it offers

solutions to the risks caused by exponential speed-up in the power of an adversary

as a result of quantum algorithms. While some advances have been made in the

area of formal verification of quantum communication protocols [11], no applicable

formal framework has yet been suggested for their automatic cryptanalysis. This is

contrary to the fact that, similar to the situation in classical security, attacks have

been discovered on proven-to-be-safe quantum protocols. In this paper we present

a decision procedure that verifies whether a protocol satisfies a security property by

deriving knowledge properties of its agents on the dynamic and epistemic traces of

the protocol. The dynamic traces are generated from the specification of a protocol

using the operational rules of distributed measurement calculus [5] (DCM). These

are then expanded to the epistemic traces using appearances of agents about the

actions of the protocol. The appearances are derived from the safety assumptions of
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the communication channels according to a set of rules. Our notions of knowledge

and time are classical and have been used in formal analysis of classical protocols,

for example in Halpern style models of [14,7] and in dynamic epistemic algebra

of [2,17].

Both the DCM model and the algebra have been previously used to analyze the

security of quantum key distribution (QKD) and its attacks [8,7,16]. The setting of

this paper has advantages over both these attempts. First, we rely on the already

existing rules of the semantics of DMC, as opposed to adding axioms for quantum

mechanics to the algebra. Second, we use the algebraic axiomatics of adjunction to

derive knowledge properties of the protocol, as opposed to model-checking them by

traversing the tree of the protocol. Third, we set the actions of the adversary in

a compositional way using the appearance maps of the algebra, as opposed to ad-

hocly adding them to the specification of the protocol. We prove that our decision

procedure is sound and terminating with regard to the pair of a DMC model and the

algebraic axiomatics of Epistemic Systems. We apply our decision procedure to a

new quantum secret sharing (QSS) protocol, which is based on graph states and has

been proposed recently in [12]. For this protocol, we develop epistemic properties

and prove them for three kinds of assumptions on the quantum channels: safe,

unsafe with non-suspicious agents, and unsafe with suspicious agents. However, we

can only work on a one-round basis and indeed, for a full analysis of protocols one

needs to run the protocol in many runs and then use probabilities, for instance on

the knowledge modalities. This would be a natural and exciting extension of the

currently proposed framework.

In a nut shell, our framework is obtained by merging the model checking ap-

proach of [8,7] and the algebraic axiomatics of [16]. The former is based on a

distributed extension [5] for an assembly language [6] that universally models com-

putations of the one way model. Its knowledge operator is defined over Kripke

structures in the style of Fagin et al [10] by using equivalence relations on the

states. Reasoning about properties of a protocol is done on the state space of this

structure using a logic with temporal and epistemic operators. The latter is based

on the Stone-like duals of these relational systems and moreover, following [4], a

quantale structure is assumed on the actions. This setting consists of a pair of a

quantale of classical and quantum actions and its right module of bits and qubits in-

volved in a protocol. The pair is endowed with a family of join-preserving maps, one

for each agent involved in the protocol. The right adjoints to these endomorphisms

give rise to a very useful notion of knowledge, both on propositions of module and

actions of quantale.

2 Decision Procedure

First, given the specification of a quantum protocol as a program in the language

of the distributed measurement calculus (DMC), we generate its dynamic traces by

executing the rules of the operational semantics. Second, we write the epistemic

property we wish to prove about security of the protocol in the language of Epistemic
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Systems. Finally, we apply our algebraic rewrite system to decide whether the

protocol satisfies the property or not, The last step unfolds the appearances to

agents of dynamic traces and adds new traces to the existing dynamic, to which we

refer as epistemic traces.

Specify and trace in DMC. A network of agents N is defined by a set of agents

acting in parallel (denoted by |) acting on a given entanglement resource |ψ〉,
N = |ψ〉 ‖A(Q).E | B(Q′).E ′ . . . .

An agent A(Q).E is specified by a name A, a set Q of qubits it owns, and an

event sequence E consisting of computations in the measurement calculus, classical

message reception c?x and sending c!y, and qubit reception qc?q and sending qc!q′.
Note that, contrary to the original definitions in [5] we now write specifications from

left to right; also agents may have extra classical parameters a, written as A(a,Q).

As an example, here is one round of Ekert’s implementation of QKD:

QKD = E12‖A(a, 1).[Ha
1 ;M1; c!a; c?b] | B(b, 2).[Hb

2 ;M2; c?a; c!b] .

The set of traces of a program are generated by following the rules of the small-

step semantics as specified in [5], but moreover, we work with projections, annotate

actions with agents that performed them, and name the preparation actions of

the initial entanglement resource |ψ〉. For example, PA,αi stands for the spin α

projection of qubit i done by agent A. The preparation actions are made explicit

by juxtaposing them to the left most of the traces; for QKD the entanglement

resource E12 is created by applying N1;N2;E12 to a 2-qubit system q1 ⊗ q2, where

N is preparation in the |+〉 state, and then distributing these qubits over agents A

and B. Two of the four possible traces for a successful run of QKD are

π = N1;N2;E
A,B
1,2 ;PA,X

1 ;PB,X
2 ; c!a; c?a; c!b; c?b, π′ = N1;N2;E

A,B
1,2 ;PA,Z

1 ;PB,Z
2 ; c!a; c?a; c!b; c?b

Reduce in Epistemic Systems. The input to the rewrite system is an expression

of the form l � r where l is the initial state and r is an epistemic property that

contains the disjunction of dynamic traces produced above. The expression qi �
[π]�A�As

j
i , reads as ‘after running the trace π of the protocol on qbit qi, agent

A knows that B knows that the value of bit i is j’. The l and r expressions are

generated as follows:

• The initial state l is made of propositions m that are formed by closing atomic classical and

quantum variables sji and qi under ¬,∧,∨ and logical constants ⊥,�, The variables are generated

via κ ::= sji | ql | ql ⊗ qw.

• The epistemic property r is generated via r ::= m | [π]m | �A(m), where �A(m) is the epistemic
modality and for π a dynamic trace [π]m is the dynamic modality.

One such expression for Ekert’s QKD is

q1 ⊗ q2 

[
N1;N2;E

A,B
1,2 ;PA,X

1 ;PB,X
2 ; c!a; c?a; c!b; c?b

]�A�B(s01 ∧ s02)

Proving this property together with a permutation of it for the knowledge of B will

imply that A and B share a piece of data. That the data is secret is proved by

showing that an adversary E does not know it, that is the following expression

,
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q1 ⊗ q2 

[
N1;N2;E

A,B
1,2 ;PA,X

1 ;PB,X
2 ; c!a; c?a; c!b; c?b

]
¬�E(s01 ∧ s02)

We proceed by analyzing uncertainty of agents about the states and actions of

protocols. These are referred to as appearance maps and are denoted by fA for an

agent A. They encode all possible actions or propositions that appear possible to an

agent, given the action that is happening or the proposition that is true in reality

and are set according to the general rules below.

(i) The agents have no uncertainty about the steps of the protocol they are involved in.

(ii) Qubits are encoded as black boxes and thus appear as the identity to all agents. Classical bits
appear as either 0 or 1 to agents.

(iii) The owner of an action has no uncertainty about his actions, but is uncertain about other
agents’ actions. His appearances are generated by instantiating variables of these actions.

(iv) There is only one adversary present in each protocol. This adversary can intercept the unsafe
channels, either quantum or classical, by stopping the messages, changing the content of the
messages, creating new messages and sending them. On a quantum channel, the change of the
content of the message is done by measuring the sent qbit and the creation of new messages
by preparing fresh qbits. On the classical channel, the change is simply affected by reading
and writing the values of the bits.

(v) On the safe channels, the adversary can either be passive or not present at all. In the latter
case, he cannot even see if messages are passing through and what is their content. In the
former case, on a classical channel, he can see the value of the bits passing by as well as the
sender and receiver of each message, but cannot change anything. On a quantum channel, he
can only see that a qbit is passing, but cannot see the state of it.

(vi) Communication actions on a safe channel are either public or private announcements to a
subgroup of agents. The former appears as the identity to all agents, whereas the latter is
identity only to the insiders in the group, and either as nothing or all possible choices to the
outsider agents. On an unsafe channel these are broken to separate send and receive actions.

(vii) Honest agents may suspect the interception actions of the adversary. In case they do, these
appear to them as either have happened or not. In case they do not suspect, they appear to
them as the neutral action in which nothing happens.

For example the appearance of the projection action PA,X1 in our above trace are

fA(PA,X
1 ) = PA,X

1 , fB(PA,X
1 ) = PA,X

1 ∨ PA,−X
1 ∨ PA,Z

1 ∨ PA,−Z
1 .

Due to space limits we refrain from presenting the rewrite rules; they are similar

to the system presented in [15]. By applying them, one first eliminates the logical

connectives ∧,∨,�A, [ ] and then the classical and quantum communication actions.

The output is a set of atomic expressions:

Definition 2.1 An expression l � r is atomic iff l is a quantum state followed by a

sequence of atomic quantum actions and r is an atomic classical or quantum state.

For instance, for a safe quantum channel, the atomic form of the our sharing

property is (q1⊗ q2)(N1;N2;E
A,B
1,2 ;PA,X1 ;PB,X2 ) � s01∧s02. These atomic expressions

contain new epistemic uncertainties and need to be verified against our operational

semantics. Only then can we check if a protocol has a desired epistemic property.

Definition 2.2 An atomic expression l � r is well-defined iff l is derivable within

the operational semantics of DMC. It is true iff r holds in all configurations resulting

from l. An epistemic property holds for a protocol whenever all its well-defined

atomic expressions are true.

Proposition 2.3 For a protocol specification N and a given expression l � r which

is built from the dynamic traces of N , the process of deciding if the epistemic prop-

erty in r holds for N is terminating and sound with regard to the pair of an Epis-

temic System and a DMC model.
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Proof. These follow from image finiteness of appearances of actions and proposi-

tions, together with soundness and termination of the rewrite system of Epistemic

Systems and the DMC model [5,15].

3 Case study: quantum secret sharing

We apply our procedure to the quantum secret sharing (QSS) protocol recently

established in [12]. In secret sharing a dealer holds a secret bit which he wants to

send to n players, such that at least k players are needed to reconstruct the secret.

The problem is well-known in classical settings and solvable for all (n, k). In the

quantum case, only the (n, n) case has been solved for the GHZ-type entanglement

[18]. The work in [12] uses instead graph states and thus is more suitable for

modelling in our measurement-based setting. Moreover, it generalizes the quantum

key distribution protocols and simplifies their proofs. We analyze and prove some of

the epistemic properties of the QKS component of the (3, 5) case where a particular

graph state is used to establish a secret key between three players and the dealer

in one go (as opposed to via several 2-party QKD protocols). This key will then be

used to distribute a secret using the other components of the protocol.

1

2

34

5

d

The resource required for the protocol is the graph state shown above, henceforward

called G(3, 5). It is prepared following the usual procedure for graph states, that is

G(3, 5) = (N1; . . . ;N5;N6;
∏
eij

Eij)⊗6
i=1 qi; ,

with eij the set of edges. The protocol proceeds as follows:

Step 1. The dealer prepares G(3, 5), sends each agent a qubit qi together with an agent identity i.

Step 2. The dealer measures in the Y or Z basis randomly and broadcasts his measurement basis.

Step 3. Each participating player measures in the X, Y or Z basis randomly, then broadcasts his
identity and measurement basis.

Step 4. Depending on these messages, each agent determines if the run was successful. If the partic-
ipating agents are neighbours, ijk = i(i+1)(i+2), this is the case for measurement combinations

MZ
6 M

Z
i M

X
j MZ

k and MY
6 M

X
i MY

j M
X
k .

If they are in a so-called T-shape, ijk = i(i+ 1)(i+ 3), the right measurement combinations are

MZ
6 M

X
i MY

j M
Y
k and MY

6 M
Y
i M

Z
j M

Z
k .

Step 5. For a successful run, measurement outcomes are correlated as follows: s6 = si ⊕ sj ⊕ sk.
Players use their secure classical channels to exchange measurement outcomes and determine
s = s6, hence establishing a shared key with the dealer.

We refrain from giving the full specification of the QSS network and move

straight on to its traces where we introduce the notation a!σ to stands for the

broadcasting of the value a throughout the network by agent σ. The communica-
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tion between the dealer and players can be listened to, while communication among

players is secure and occurs through a handshake between operations c? and c! (c!?

in short). We differentiate between both types of communication in our security

analysis below. A typical trace for a successful run of QSS is as follows

π = N1; . . . ;N6;
∏

eij
Eij (preparation)

(qc!?Dq1) . . . (qc!?
Dq5) (distribution of qubits)

PD,±a
6 P

Ai,±b
i P

Aj ,±c

j P
Ak,±f
k (measurement projections)

a!D; b!Ai ; c!Aj ; f !Ak (public broadcast of measurement bases)

(c!?
Ai
Aj ,Ak

si)(c!?
Aj

Ai,Ak
sj)(c!?

Ak
Ai,Aj

sk) (private exchange of player measurement outcomes).

Here a ∈ {X,Y }, b, c, f ∈ {X,Y, Z} are measurement basis, qc!?DAi
is the quantum

message passing from D to Ai ∈ {A1, · · · , A5} denoting the 5 players, and c!?Ai
β is

the private announcement from player Ai to the group β ⊆ {A1, · · · , A5}. We omit

the calculation of the secret key s = si ⊕ sj ⊕ sk. Successful traces depend only on

the chosen values for a, b, c and e; one example for adjoining agents A1, A2 and A3,

owning qubits 1,2 and 3 respectively, is

π = . . . PD,+Z
6 PA1,−Z

1 PA2,−X
2 PA3,+Z

3 Z!D;Z!A1 ;X!A2 ;Z!A3 ; (c!?A1
A2,A3

1)(c!?A2
A1,A3

1)(c!?A3
A1.A2

0)

Epistemic Properties

We consider three cases: agents’ heaven, adversary’s heaven, and adversary’s hell.

In the first case the quantum channel is safe, in the second case it is not and the

honest agents do not suspect it, in the third case it is not and the honest agents do

suspect it. The other channels are assumed to be safe in both cases.

(i) Agents’ heaven

The appearance of the projections are set according to rule (iii) of appear-

ances. Since the channels are safe, the communication actions on the quantum

channel are also treated as public broadcasts, i.e. for σ an agent we have

fσ(qc!?
Dqi) = qc!?Dqi. The communication actions on the classical channels

are private announcements, i.e. for a subset of players β we have

fσ(c!?
Ai
β sji ) =

{
c!?σβs

j
i σ ∈ β

c!?σβs
j
i ∨ c!?

Ai
β sji σ /∈ β

Some of the epistemic properties of interest for our trace π, allied players

Ai ∈ {A1, A2, A3}, joined with dealer σ ∈ {D,A1, A2, A3} are as follows

• The dealer knows his bit and binary sum of allied players bits, �D (s06 ∧ (sb11 ⊕ sb22 ⊕ sb33 )).

• Allied players moreover know the value of each single measurement, �Ai
(s06∧s11∧s12∧s03).

• The dealer knows that the players know his bit and the players know that the dealer knows

the sum of their bits, �D�Ai
s06 and �Ai

�D(sb11 ⊕ sb22 ⊕ sb33 ).

• The adversary does not know any of the above, that is ¬�E (s06 ∧ (sb11 ⊕ sb22 ⊕ sb33 )).

• The dealer and the agents know the above �σ¬�E (s06 ∧ (sb11 ⊕ sb22 ⊕ sb33 )).

(ii) Adversary’s heaven

The quantum channel is not safe and by rule (iv) we break its broadcasts to

separate send and receive actions, whose appearances are not identities any
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more. The appearances for a new qbit qj with j ≥ 7 are

fσ′ (qc!Dqi) =

{
qc!Dqi; qc?

Eqi;P
E,e
i ;NE,e

j ; qc!Eqj σ′ = E

qc!Dqj o.w.

For the corresponding receive action, it appears to the dealer that players

receive the qbit he sent to them, fD(qc?
Aiqi) = qc?Aiqi, whereas in reality

they receive the qubit sent to them by adversary, fAi(qc?
Aiqi) = qc?Aiqj . In

case the eavesdropper is lucky and chooses the right projection for all three

qubits he intercepts, he is able to derive the value of the key. In this case some

of the epistemic properties of interest are

• The adversary knows the shared key, that is �Es
0
6.

• The players and the dealer wrongly think that he does not know this �σ¬�Es
0
6.

• Note that here the adversary has to be more lucky than in Ekert’91. This is because he
has to intercept the qubits of three allied players instead of one, and has to choose from
three measurement bases.

(iii) Adversary’s hell

This is the same as above, but the players suspect adversary’s actions, that is

fAi
(qc!Dqi) = qc!Dqj ∨ (qc!Dqi; qc?

Eqi;P
E,e
i ;NE,e

j ; qc!Eqj)

Similarly, the dealer suspect adversary’s actions on the receipt of his sent qbit

fD(qc?Aiqi) = qc?Aiqi ∨ (qc?Eqi;P
E,e
i ;NE,e

j ; qc!Eqj ; qc?
Aiqj)

An interesting epistemic property is

The dealer and the players are not sure anymore if the adversary knows his bit ¬�σ¬�Es
0
6 .

We verify the property ⊗6
i=1qi � [π]�D�i s

0
6 in the agents’ heaven and a similar

one with ¬�σ¬�Es
0
6 . in the adversary’s hell. The atomic expressions are generated

via the following rewritings, where αi’s denote the juxtaposed actions of π,

⊗6
i=1qi 
 [π]�D�Ai

s06 � ⊗6
i=1qi;π 
 �D�Ai

s06 � fAi
fD(⊗6

i=1qi;π) 
 s06 �
fAi

fD(⊗6
i=1qi); fAi

fD(π) 
 s06 � fAi
fD(⊗6

i=1qi); fAi
fD(α1); · · · ; fAi

fD(αn) 
 s06 .

By rule (ii) of appearances we have fAifD(⊗6
i=1qi) = ⊗6

i=1qi. By rule (iv) and our

assumptions on channels, we have fD(αi) = αi for αAi a quantum or broadcast

communication action. By rule (iii) for communication between players we have

fD(c!?
Ai
β s

j
i ) = c!?Ai

β s
j
i ∨ c!?Ai

β s
j

i
, similarly for the projection actions

fD(PD,+Z
6 ) = PD,+Z

6 , fD(PA1,−Z
1 ) = PA1,−Z

1 ∨PA1,+Z
1 ∨PA1,−X

1 ∨PA1,+X
1 ∨PA1,−Y

1 ∨PA1,+Y
1 .

The values for the fAi ’s are similarly set. Substituting these values in the above

expression, we first eliminate the traces in which the bases of projections do not

match the announced bases. Next we eliminate the communication actions from

these traces whose content do not match the projections. As a result, we obtain

a set of atomic expressions, of which only those satisfying s06 = sb11 ⊕ sb22 ⊕ sb33 are

well-defined in DMC. An example (out of four) is

⊗6
i=1qi;N1; . . . ;N6;

∏
eij

Eij ;P
D,+Z
6 ;PA1,+Z

1 ;PA2,−X
2 ;PA3,−Z

3 
 s06 .
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This atomic expression is true, since in all its final configurations s6 is 0, and thus

our epistemic property holds for the secret sharing protocol. On the contrary, in the

adversary’s hell, one can similarly show that the epistemic property �D¬�Es
0
6 does

not hold and thus s06 is not treated a secret anymore. Moreover, we also discover

paths of an intercept-change attack for each agent, for example the one for the

player A1 contains the following sequence of actions

· · · ; qc!Dq1; qc?Eq1;PE,+Z
1 ;NE,+Z

7 ; qc!Eq7; qc?
A1q7;P

A1,+Z
7 ; · · ·

4 Conclusion

In this article we proposed a new framework for formal analysis of security issues

in quantum cryptographic protocols. The approach combines an algebraic rewrite

system with a specification language for quantum distributed computations. The

former provides machinery to work with uncertainties of agents in a protocol in a

compositional way, while the latter inherently encodes the rules of quantum me-

chanics. Our framework was put to the test in the analysis of quantum secret

sharing, where we showed some epistemic properties of the protocol in the presence

and absence of an active adversary. As a procedure of this type typically becomes

hairy, we envision providing a software implementation which automates the anal-

ysis of protocols. A software implementation of the algebra [15] is already in place

to handle part of the verification. The construction of a tool that automatically

derives the traces and semantics of a protocol is currently underway.
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