90,344 research outputs found

    Parameter Learning of Logic Programs for Symbolic-Statistical Modeling

    Full text link
    We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. definite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, that runs for a class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks that have been developed independently in each research field. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can significantly outperform the Inside-Outside algorithm

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    Quasi-SLCA based Keyword Query Processing over Probabilistic XML Data

    Full text link
    The probabilistic threshold query is one of the most common queries in uncertain databases, where a result satisfying the query must be also with probability meeting the threshold requirement. In this paper, we investigate probabilistic threshold keyword queries (PrTKQ) over XML data, which is not studied before. We first introduce the notion of quasi-SLCA and use it to represent results for a PrTKQ with the consideration of possible world semantics. Then we design a probabilistic inverted (PI) index that can be used to quickly return the qualified answers and filter out the unqualified ones based on our proposed lower/upper bounds. After that, we propose two efficient and comparable algorithms: Baseline Algorithm and PI index-based Algorithm. To accelerate the performance of algorithms, we also utilize probability density function. An empirical study using real and synthetic data sets has verified the effectiveness and the efficiency of our approaches

    Applying quantitative semantics to higher-order quantum computing

    Full text link
    Finding a denotational semantics for higher order quantum computation is a long-standing problem in the semantics of quantum programming languages. Most past approaches to this problem fell short in one way or another, either limiting the language to an unusably small finitary fragment, or giving up important features of quantum physics such as entanglement. In this paper, we propose a denotational semantics for a quantum lambda calculus with recursion and an infinite data type, using constructions from quantitative semantics of linear logic

    A comparative reliability analysis of ETCS train radio communications

    Get PDF
    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and were applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility result in two important directions. First, we sketch the cornerstones of a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation for a detailed analysis of the train radio case study
    • …
    corecore