5 research outputs found

    Evaluating the effect of noise on Secure Quantum Networks

    Get PDF
    This thesis focuses on examining the resilience of secure quantum networks to environmental noise. Specifically, we evaluate the effectiveness of two well-known quantum key distribution (QKD) protocols: the Coherent One-Way (COW) protocol and Kak’s Three-Stage protocol (Kak06). The thesis systematically evaluates these protocols in terms of their efficiency, operational feasibility, and resistance to noise, thereby contributing to the progress of secure quantum communications. Using simulations, this study evaluates the protocols in realistic scenarios that include factors such as noise and decoherence. The results illustrate each protocol’s relative benefits and limitations, highlighting the three-stage protocol’s superior security characteristics, resistance to interference, and the COW protocol’s efficient functioning and compatibility with extensive fiber networks

    Patterns and Signals of Biology: An Emphasis On The Role of Post Translational Modifications in Proteomes for Function and Evolutionary Progression

    Get PDF
    After synthesis, a protein is still immature until it has been customized for a specific task. Post-translational modifications (PTMs) are steps in biosynthesis to perform this customization of protein for unique functionalities. PTMs are also important to protein survival because they rapidly enable protein adaptation to environmental stress factors by conformation change. The overarching contribution of this thesis is the construction of a computational profiling framework for the study of biological signals stemming from PTMs associated with stressed proteins. In particular, this work has been developed to predict and detect the biological mechanisms involved in types of stress response with PTMs in mitochondrial (Mt) and non-Mt protein. Before any mechanism can be studied, there must first be some evidence of its existence. This evidence takes the form of signals such as biases of biological actors and types of protein interaction. Our framework has been developed to locate these signals, distilled from “Big Data” resources such as public databases and the the entire PubMed literature corpus. We apply this framework to study the signals to learn about protein stress responses involving PTMs, modification sites (MSs). We developed of this framework, and its approach to analysis, according to three main facets: (1) by statistical evaluation to determine patterns of signal dominance throughout large volumes of data, (2) by signal location to track down the regions where the mechanisms must be found according to the types and numbers of associated actors at relevant regions in protein, and (3) by text mining to determine how these signals have been previously investigated by researchers. The results gained from our framework enable us to uncover the PTM actors, MSs and protein domains which are the major components of particular stress response mechanisms and may play roles in protein malfunction and disease

    QUANTUM SECURE COMMUNICATION USING POLARIZATION HOPPING MULTI-STAGE PROTOCOLS

    Get PDF
    This dissertation presents a study of the security and performance of a quantum communication system using multi-stage multi-photon tolerant protocols. Multi-stage protocols are a generalization of the three-stage protocol proposed in 2006 by Subhash Kak. Multi-stage protocols use “Polarization Hopping,” which is the process of changing the polarization state at each stage of transmission. During the execution of a multi-stage protocol, the message transfer always starts by encoding a bit of information in a polarization state; for example, bit 0 is encoded using state |0⟩ and bit 1 is encoded using state|1⟩ whereas, on the channel, the state of polarization is given by α|├ 0⟩┤+β|├ 1⟩┤. In the following α and β are restricted to the real numbers i.e., the polarization stays on the equator of the Poincare sphere. A transformation applied by one communicating party at a given stage will result in new values of α and β. This dissertation analyzes the security of multi-stage, multi-photon tolerant protocols and proposes an upper bound on the average number of photons per pulse in the cases where Fock states and the cases where coherent states are used in the implementation of the three-stage protocol. The derived average number of photons is the maximum limit at which the three-stage protocol can operate at a quantum secure level while operating in a multi-photon domain. In addition, this dissertation studies the vulnerability of the multi-stage protocol to the Trojan horse attack, Photon Number splitting attack (PNS), Amplification attack, as well as the man-in-the middle attack. Moreover, this dissertation proposes a modified version of the multi-stage protocol. This modified version uses an initialization vector and implements a chaining mode between consecutive implementations of the protocol. The modified version is proposed in the case of the three-stage protocol and named a key/message expansion four variables three-stage protocol. The proposed nomenclature is based on the fact that an additional variable is added to secure the three-stage protocol. The introduction of this additional variable has the potential to secure the multi-stage protocol in the multi-photon regime. It results in the eavesdropper having a set of simultaneous equations where the number of variables exceeds the number of equations. The dissertation also addresses the performance of the multi-stage, multi-photon tolerant protocol. An average photon number of 1.5 photon/stage is used to calculate the maximum achievable distance and key transfer rates while using the single-stage protocol over fiber optic cables. We compute the increase in distance as well as data transfer rate while using the single-stage protocol. Channel losses as well as the detector losses are accounted for. Finally, an application of the multi-stage protocol in IEEE 802.11 is proposed. This application provides wireless networks with a quantum-level of security. It proposes the integration of multi-stage protocols into the four-way handshake of IEEE 802.11

    A Probabilistic Quantum Key Transfer Protocol

    Get PDF
    We propose a protocol to transfer a one-time-pad (in a probabilistic manner) from Alice to Bob, over a public channel. The proposed protocol is unique because Bob merely acts as the receiver of the pad (secret key), i.e. Bob does not need to send any message back to Alice unless he detects eavesdropping. Such a secure transfer of one-timepad, over public channel, is not possible in classical cryptography and in quantum cryptography all previous protocols require Bob to send almost as many messages back to Alice as she does to Bob, to establish a key.
    corecore