1,776 research outputs found

    A probabilistic model of human-robot spatial interaction using a qualitative trajectory calculus

    Get PDF
    In this paper we propose a probabilistic model for Human-Robot Spatial Interaction (HRSI) using a Qualitative Trajectory Calculus (QTC). In particular, we will build on previous work representing HRSI as a Markov chain of QTC states and evolve this to an approach using a Hidden Markov Model representation. Our model accounts for the invalidity of certain transitions within the QTC to reduce the complexity of the probabilistic model and to ensure state sequences in accordance to this representational framework. We show the appropriateness of our approach by using the probabilistic model to encode different HRSI behaviours observed in a human-robot interaction study and show how the models can be used to classify these behaviours reliably. Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved

    A computational model of human-robot spatial interactions based on a qualitative trajectory calculus

    Get PDF
    In this paper we propose a probabilistic sequential model of Human-Robot Spatial Interaction (HRSI) using a well-established Qualitative Trajectory Calculus (QTC) to encode HRSI between a human and a mobile robot in a meaningful, tractable, and systematic manner. Our key contribution is to utilise QTC as a state descriptor and model HRSI as a probabilistic sequence of such states. Apart from the sole direction of movements of human and robot modelled by QTC, attributes of HRSI like proxemics and velocity profiles play vital roles for the modelling and generation of HRSI behaviour. In this paper, we particularly present how the concept of proxemics can be embedded in QTC to facilitate richer models. To facilitate reasoning on HRSI with qualitative representations, we show how we can combine the representational power of QTC with the concept of proxemics in a concise framework, enriching our probabilistic representation by implicitly modelling distances. We show the appropriateness of our sequential model of QTC by encoding different HRSI behaviours observed in two spatial interaction experiments. We classify these encounters, creating a comparative measurement, showing the representational capabilities of the model

    Social distance augmented qualitative trajectory calculus for human-robot spatial interaction

    Get PDF
    In this paper we propose to augment a wellestablished Qualitative Trajectory Calculus (QTC) by incorporating social distances into the model to facilitate a richer and more powerful representation of Human-Robot Spatial Interaction (HRSI). By combining two variants of QTC that implement different resolutions and switching between them based on distance thresholds we show that we are able to both reduce the complexity of the representation and at the same time enrich QTC with one of the core HRSI concepts: proxemics. Building on this novel integrated QTC model, we propose to represent the joint spatial behaviour of a human and a robot employing a probabilistic representation based on Hidden Markov Models. We show the appropriateness of our approach by encoding different HRSI behaviours observed in a human-robot interaction study and show how the models can be used to represent and classify these behaviours using social distance-augmented QTC

    Qualitative design and implementation of human-robot spatial interactions

    Get PDF
    Despite the large number of navigation algorithms available for mobile robots, in many social contexts they often exhibit inopportune motion behaviours in proximity of people, often with very "unnatural" movements due to the execution of segmented trajectories or the sudden activation of safety mechanisms (e.g., for obstacle avoidance). We argue that the reason of the problem is not only the difficulty of modelling human behaviours and generating opportune robot control policies, but also the way human-robot spatial interactions are represented and implemented. In this paper we propose a new methodology based on a qualitative representation of spatial interactions, which is both flexible and compact, adopting the well-defined and coherent formalization of Qualitative Trajectory Calculus (QTC). We show the potential of a QTC-based approach to abstract and design complex robot behaviours, where the desired robot's behaviour is represented together with its actual performance in one coherent approach, focusing on spatial interactions rather than pure navigation problems

    Towards modelling group-robot interactions using a qualitative spatial representation

    Get PDF
    This paper tackles the problem of finding a suitable qualitative representation for robots to reason about activity spaces where they carry out tasks interacting with a group of people. The Qualitative Spatial model for Group Robot Interaction (QS-GRI) defines Kendon-formations depending on: (i) the relative location of the robot with respect to other individuals involved in that interaction; (ii) the individuals' orientation; (iii) the shared peri-personal distance; and (iv) the role of the individuals (observer, main character or interactive). The evolution of Kendon-formations between is studied, that is, how one formation is transformed into another. These transformations can depend on the role that the robot have, and on the amount of people involved.Postprint (author's final draft

    Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus

    Get PDF
    The analysis and understanding of human-robot joint spatial behaviour (JSB) such as guiding, approaching, departing, or coordinating movements in narrow spaces and its communicative and dynamic aspects are key requirements on the road towards more intuitive interaction, safe encounter, and appealing living with mobile robots. This endeavours demand for appropriate models and methodologies to represent JSB and facilitate its analysis. In this paper, we adopt a qualitative trajectory calculus (QTC) as a formal foundation for the analysis and representation of such spatial behaviour of a human and a robot based on a compact encoding of the relative trajectories of two interacting agents in a sequential model. We present this QTC together with a distance measure and a probabilistic behaviour model and outline its usage in an actual JSB study.We argue that the proposed QTC coding scheme and derived methodologies for analysis and modelling are flexible and extensible to be adapted for a variety of other scenarios and studies. I

    Towards Safer Robot Motion: Using a Qualitative Motion Model to Classify Human-Robot Spatial Interaction

    Get PDF
    For adoption of Autonomous Mobile Robots (AMR) across a breadth of industries, they must navigate around humans in a way which is safe and which humans perceive as safe, but without greatly compromising efficiency. This work aims to classify the Human-Robot Spatial Interaction (HRSI) situation of an interacting human and robot, to be applied in Human-Aware Navigation (HAN) to account for situational context. We develop qualitative probabilistic models of relative human and robot movements in various HRSI situations to classify situations, and explain our plan to develop per-situation probabilistic models of socially legible HRSI to predict human and robot movement. In future work we aim to use these predictions to generate qualitative constraints in the form of metric cost-maps for local robot motion planners, enforcing more efficient and socially legible trajectories which are both physically safe and perceived as safe

    Real-time multisensor people tracking for human-robot spatial interaction

    Get PDF
    All currently used mobile robot platforms are able to navigate safely through their environment, avoiding static and dynamic obstacles. However, in human populated environments mere obstacle avoidance is not sufficient to make humans feel comfortable and safe around robots. To this end, a large community is currently producing human-aware navigation approaches to create a more socially acceptable robot behaviour. Amajorbuilding block for all Human-Robot Spatial Interaction is the ability of detecting and tracking humans in the vicinity of the robot. We present a fully integrated people perception framework, designed to run in real-time on a mobile robot. This framework employs detectors based on laser and RGB-D data and a tracking approach able to fuse multiple detectors using different versions of data association and Kalman filtering. The resulting trajectories are transformed into Qualitative Spatial Relations based on a Qualitative Trajectory Calculus, to learn and classify different encounters using a Hidden Markov Model based representation. We present this perception pipeline, which is fully implemented into the Robot Operating System (ROS), in a small proof of concept experiment. All components are readily available for download, and free to use under the MIT license, to researchers in all fields, especially focussing on social interaction learning by providing different kinds of output, i.e. Qualitative Relations and trajectories

    Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction

    Full text link
    This paper presents a computational model of the processing of dynamic spatial relations occurring in an embodied robotic interaction setup. A complete system is introduced that allows autonomous robots to produce and interpret dynamic spatial phrases (in English) given an environment of moving objects. The model unites two separate research strands: computational cognitive semantics and on commonsense spatial representation and reasoning. The model for the first time demonstrates an integration of these different strands.Comment: in: Pham, D.-N. and Park, S.-B., editors, PRICAI 2014: Trends in Artificial Intelligence, volume 8862 of Lecture Notes in Computer Science, pages 958-971. Springe
    • …
    corecore