3 research outputs found

    A Probabilistic Framework for Imitating Human Race Driver Behavior

    Full text link
    Understanding and modeling human driver behavior is crucial for advanced vehicle development. However, unique driving styles, inconsistent behavior, and complex decision processes render it a challenging task, and existing approaches often lack variability or robustness. To approach this problem, we propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules. A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network. Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms. The modular architecture of the proposed framework facilitates straightforward extensibility in driving line adaptation and sequencing of multiple movement primitives for future research.Comment: updated references [17] and [33]; added journal inf

    Actor-Critic Reinforcement Learning for Control with Stability Guarantee

    Full text link
    Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks, ranging from motion planning and navigation to end-to-end visual manipulation. However, stability is not guaranteed in model-free RL by solely using data. From a control-theoretic perspective, stability is the most important property for any control system, since it is closely related to safety, robustness, and reliability of robotic systems. In this paper, we propose an actor-critic RL framework for control which can guarantee closed-loop stability by employing the classic Lyapunov's method in control theory. First of all, a data-based stability theorem is proposed for stochastic nonlinear systems modeled by Markov decision process. Then we show that the stability condition could be exploited as the critic in the actor-critic RL to learn a controller/policy. At last, the effectiveness of our approach is evaluated on several well-known 3-dimensional robot control tasks and a synthetic biology gene network tracking task in three different popular physics simulation platforms. As an empirical evaluation on the advantage of stability, we show that the learned policies can enable the systems to recover to the equilibrium or way-points when interfered by uncertainties such as system parametric variations and external disturbances to a certain extent.Comment: IEEE RA-L + IROS 202

    A Probabilistic Framework for Imitating Human Race Driver Behavior

    No full text
    corecore