3,716 research outputs found

    Multimedia search without visual analysis: the value of linguistic and contextual information

    Get PDF
    This paper addresses the focus of this special issue by analyzing the potential contribution of linguistic content and other non-image aspects to the processing of audiovisual data. It summarizes the various ways in which linguistic content analysis contributes to enhancing the semantic annotation of multimedia content, and, as a consequence, to improving the effectiveness of conceptual media access tools. A number of techniques are presented, including the time-alignment of textual resources, audio and speech processing, content reduction and reasoning tools, and the exploitation of surface features

    Beyond English text: Multilingual and multimedia information retrieval.

    Get PDF
    Non

    Language-based multimedia information retrieval

    Get PDF
    This paper describes various methods and approaches for language-based multimedia information retrieval, which have been developed in the projects POP-EYE and OLIVE and which will be developed further in the MUMIS project. All of these project aim at supporting automated indexing of video material by use of human language technologies. Thus, in contrast to image or sound-based retrieval methods, where both the query language and the indexing methods build on non-linguistic data, these methods attempt to exploit advanced text retrieval technologies for the retrieval of non-textual material. While POP-EYE was building on subtitles or captions as the prime language key for disclosing video fragments, OLIVE is making use of speech recognition to automatically derive transcriptions of the sound tracks, generating time-coded linguistic elements which then serve as the basis for text-based retrieval functionality

    Learning Visual Features from Snapshots for Web Search

    Full text link
    When applying learning to rank algorithms to Web search, a large number of features are usually designed to capture the relevance signals. Most of these features are computed based on the extracted textual elements, link analysis, and user logs. However, Web pages are not solely linked texts, but have structured layout organizing a large variety of elements in different styles. Such layout itself can convey useful visual information, indicating the relevance of a Web page. For example, the query-independent layout (i.e., raw page layout) can help identify the page quality, while the query-dependent layout (i.e., page rendered with matched query words) can further tell rich structural information (e.g., size, position and proximity) of the matching signals. However, such visual information of layout has been seldom utilized in Web search in the past. In this work, we propose to learn rich visual features automatically from the layout of Web pages (i.e., Web page snapshots) for relevance ranking. Both query-independent and query-dependent snapshots are considered as the new inputs. We then propose a novel visual perception model inspired by human's visual search behaviors on page viewing to extract the visual features. This model can be learned end-to-end together with traditional human-crafted features. We also show that such visual features can be efficiently acquired in the online setting with an extended inverted indexing scheme. Experiments on benchmark collections demonstrate that learning visual features from Web page snapshots can significantly improve the performance of relevance ranking in ad-hoc Web retrieval tasks.Comment: CIKM 201
    • 

    corecore