12,917 research outputs found

    Optimization of intersatellite routing for real-time data download

    Get PDF
    The objective of this study is to develop a strategy to maximise the available bandwidth to Earth of a satellite constellation through inter-satellite links. Optimal signal routing is achieved by mimicking the way in which ant colonies locate food sources, where the 'ants' are explorative data packets aiming to find a near-optimal route to Earth. Demonstrating the method on a case-study of a space weather monitoring constellation; we show the real-time downloadable rate to Earth

    A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints

    Get PDF
    We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.Comment: 24 pages, 9 figures, presented at SIGMETRICS'1

    Rank-1 Tensor Approximation Methods and Application to Deflation

    Full text link
    Because of the attractiveness of the canonical polyadic (CP) tensor decomposition in various applications, several algorithms have been designed to compute it, but efficient ones are still lacking. Iterative deflation algorithms based on successive rank-1 approximations can be used to perform this task, since the latter are rather easy to compute. We first present an algebraic rank-1 approximation method that performs better than the standard higher-order singular value decomposition (HOSVD) for three-way tensors. Second, we propose a new iterative rank-1 approximation algorithm that improves any other rank-1 approximation method. Third, we describe a probabilistic framework allowing to study the convergence of deflation CP decomposition (DCPD) algorithms based on successive rank-1 approximations. A set of computer experiments then validates theoretical results and demonstrates the efficiency of DCPD algorithms compared to other ones
    corecore