9 research outputs found

    Balancing Exploration and Exploitation: A New Algorithm for Active Machine Learning

    Get PDF
    Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise

    Active Learning to Maximize Area Under the ROC Curve

    Full text link

    Image segmentation and pattern classification using support vector machines

    Get PDF
    Image segmentation and pattern classification have long been important topics in computer science research. Image segmentation is one of the basic and challenging lower-level image processing tasks. Feature extraction, feature reduction, and classifier design based on selected features are the three essential issues for the pattern classification problem. In this dissertation, an automatic Seeded Region Growing (SRG) algorithm for color image segmentation is developed. In the SRG algorithm, the initial seeds are automatically determined. An adaptive morphological edge-linking algorithm to fill in the gaps between edge segments is designed. Broken edges are extended along their slope directions by using the adaptive dilation operation with suitably sized elliptical structuring elements. The size and orientation of the structuring element are adjusted according to local properties. For feature reduction, an improved feature reduction method in input and feature spaces using Support Vector Machines (SVMs) is developed. In the input space, a subset of input features is selected by the ranking of their contributions to the decision function. In the feature space, features are ranked according to the weighted support vectors in each dimension. For object detection, a fast face detection system using SVMs is designed. Twoeye patterns are first detected using a linear SVM, so that most of the background can be eliminated quickly. Two-layer 2nd-degree polynomial SVMs are trained for further face verification. The detection process is implemented directly in feature space, which leads to a faster SVM. By training a two-layer SVM, higher classification rates can be achieved. For active learning, an improved incremental training algorithm for SVMs is developed. Instead of selecting training samples randomly, the k-mean clustering algorithm is applied to collect the initial set of training samples. In active query, a weight is assigned to each sample according to its distance to the current separating hyperplane and the confidence factor. The confidence factor, calculated from the upper bounds of SVM errors, is used to indicate the degree of closeness of the current separating hyperplane to the optimal solution

    Novel neural network-based algorithms for urban classification and change detection from satellite imagery

    Get PDF
    L`attivitĂ  umana sta cambiando radicalmente l`ecosistema ambientale, unito anche alla rapida espansione demografica dei sistemi urbani. Benche` queste aree rappresentano solo una minima frazione della Terra, il loro impatto sulla richiesta di energia, cibo, acqua e materiali primi, e` enorme. Per cui, una informazione accurata e tempestiva risulta essere essenziale per gli enti di protezione civile in caso, ad esempio, di catastrofi ambientali. Negli ultimi anni il forte sviluppo di sistemi satellitari, sia dal punto di vista della risoluzione spaziale che di quella radiometrica e temporale, ha permesso una sempre piu` accurato monitoraggio della Terra, sia con sistemi ottici che con quelli RADAR. Ad ogni modo, una piu` alta risoluzione (sia spaziale, che spettrale o temporale) presenta tanti vantaggi e miglioramenti quanti svantaggi e limitazioni. In questa tesi sono discussi in dettaglio i diversi aspetti e tecniche per la classificazione e monitoraggio dei cambiamenti di aree urbane, utilizzando sia sistemi ottici che RADAR. Particolare enfasi e` data alla teoria ed all`uso di reti neurali.Human activity dominates the Earth's ecosystems with structural modifications. The rapid population growth over recent decades and the concentration of this population in and around urban areas have significantly impacted the environment. Although urban areas represent a small fraction of the land surface, they affect large areas due to the magnitude of the associated energy, food, water, and raw material demands. Reliable information in populated areas is essential for urban planning and strategic decision making, such as civil protection departments in cases of emergency. Remote sensing is increasingly being used as a timely and cost-effective source of information in a wide number of applications, from environment monitoring to location-aware systems. However, mapping human settlements represents one of the most challenging areas for the remote sensing community due to its high spatial and spectral diversity. From the physical composition point of view, several different materials can be used for the same man-made element (for example, building roofs can be made of clay tiles, metal, asphalt, concrete, plastic, grass or stones). On the other hand, the same material can be used for different purposes (for example, concrete can be found in paved roads or building roofs). Moreover, urban areas are often made up of materials present in the surrounding region, making them indistinguishable from the natural or agricultural areas (examples can be unpaved roads and bare soil, clay tiles and bare soil, or parks and vegetated open spaces) [1]. During the last two decades, significant progress has been made in developing and launching satellites with instruments, in both the optical/infrared and microwave regions of the spectra, well suited for Earth observation with an increasingly finer spatial, spectral and temporal resolution. Fine spatial sensors with metric or sub-metric resolution allow the detection of small-scale objects, such as elements of residential housing, commercial buildings, transportation systems and utilities. Multi-spectral and hyper-spectral remote sensing systems provide additional discriminative features for classes that are spectrally similar, due to their higher spectral resolution. The temporal component, integrated with the spectral and spatial dimensions, provides essential information, for example on vegetation dynamics. Moreover, the delineation of temporal homogeneous patches reduces the effect of local spatial heterogeneity that often masks larger spatial patterns. Nevertheless, higher resolution (spatial, spectral or temporal) imagery comes with limits and challenges that equal the advantages and improvements, and this is valid for both optical and synthetic aperture radar data [2]. This thesis addresses the different aspects of mapping and change detection of human settlements, discussing the main issues related to the use of optical and synthetic aperture radar data. Novel approaches and techniques are proposed and critically discussed to cope with the challenges of urban areas, including data fusion, image information mining, and active learning. The chapters are subdivided into three main parts. Part I addresses the theoretical aspects of neural networks, including their different architectures, design, and training. The proposed neural networks-based algorithms, their applications to classification and change detection problems, and the experimental results are described in Part II and Part III

    A probabilistic active support vector learning algorithm

    No full text
    Abstract—The paper describes a probabilistic active learning strategy for support vector machine (SVM) design in large data applications. The learning strategy is motivated by the statistical query model. While most existing methods of active SVM learning query for points based on their proximity to the current separating hyperplane, the proposed method queries for a set of points according to a distribution as determined by the current separating hyperplane and a newly defined concept of an adaptive confidence factor. This enables the algorithm to have more robust and efficient learning capabilities. The confidence factor is estimated from local information using the k nearest neighbor principle. The effectiveness of the method is demonstrated on real-life data sets both in terms of generalization performance, query complexity, and training time. Index Terms—Data mining, learning theory, query learning, incremental learning, statistical query model, classification.
    corecore