8,499 research outputs found

    Graph Kernels and Applications in Bioinformatics

    Get PDF
    In recent years, machine learning has emerged as an important discipline. However, despite the popularity of machine learning techniques, data in the form of discrete structures are not fully exploited. For example, when data appear as graphs, the common choice is the transformation of such structures into feature vectors. This procedure, though convenient, does not always effectively capture topological relationships inherent to the data; therefore, the power of the learning process may be insufficient. In this context, the use of kernel functions for graphs arises as an attractive way to deal with such structured objects. On the other hand, several entities in computational biology applications, such as gene products or proteins, may be naturally represented by graphs. Hence, the demanding need for algorithms that can deal with structured data poses the question of whether the use of kernels for graphs can outperform existing methods to solve specific computational biology problems. In this dissertation, we address the challenges involved in solving two specific problems in computational biology, in which the data are represented by graphs. First, we propose a novel approach for protein function prediction by modeling proteins as graphs. For each of the vertices in a protein graph, we propose the calculation of evolutionary profiles, which are derived from multiple sequence alignments from the amino acid residues within each vertex. We then use a shortest path graph kernel in conjunction with a support vector machine to predict protein function. We evaluate our approach under two instances of protein function prediction, namely, the discrimination of proteins as enzymes, and the recognition of DNA binding proteins. In both cases, our proposed approach achieves better prediction performance than existing methods. Second, we propose two novel semantic similarity measures for proteins based on the gene ontology. The first measure directly works on the gene ontology by combining the pairwise semantic similarity scores between sets of annotating terms for a pair of input proteins. The second measure estimates protein semantic similarity using a shortest path graph kernel to take advantage of the rich semantic knowledge contained within ontologies. Our comparison with other methods shows that our proposed semantic similarity measures are highly competitive and the latter one outperforms state-of-the-art methods. Furthermore, our two methods are intrinsic to the gene ontology, in the sense that they do not rely on external sources to calculate similarities

    Analysis of High-Throughput Data - Protein-Protein Interactions, Protein Complexes and RNA Half-life

    Get PDF
    The development of high-throughput techniques has lead to a paradigm change in biology from the small-scale analysis of individual genes and proteins to a genome-scale analysis of biological systems. Proteins and genes can now be studied in their interaction with each other and the cooperation within multi-subunit protein complexes can be investigated. Moreover, time-dependent dynamics and regulation of these processes and associations can now be explored by monitoring mRNA changes and turnover. The in-depth analysis of these large and complex data sets would not be possible without sophisticated algorithms for integrating different data sources, identifying interesting patterns in the data and addressing the high variability and error rates in biological measurements. In this thesis, we developed such methods for the investigation of protein interactions and complexes and the corresponding regulatory processes. In the first part, we analyze networks of physical protein-protein interactions measured in large-scale experiments. We show that the topology of the complete interactomes can be confidently extrapolated despite high numbers of missing and wrong interactions from only partial measurements of interaction networks. Furthermore, we find that the structure and stability of protein interaction networks is not only influenced by the degree distribution of the network but also considerably by the suppression or propagation of interactions between highly connected proteins. As analysis of network topology is generally focused on large eukaryotic networks, we developed new methods to analyze smaller networks of intraviral and virus-host interactions. By comparing interactomes of related herpesviral species, we could detect a conserved core of protein interactions and could address the low coverage of the yeast two-hybrid system. In addition, common strategies in the interaction of the viruses with the host cell were identified. New affinity purification methods now make it possible to directly study associations of proteins in complexes. Due to experimental errors the individual protein complexes have to be predicted with computational methods from these purification results. As previously published methods relied more or less heavily on existing knowledge on complexes, we developed an unsupervised prediction algorithm which is independent from such additional data. Using this approach, high-quality protein complexes can be identified from the raw purification data alone for any species purification experiments are performed. To identify the direct, physical interactions within these predicted complexes and their subcomponent structure, we describe a new approach to extract the highest scoring subnetwork connecting the complex and interactions not explained by alternative paths of indirect interactions. In this way, important interactions within the complexes can be identified and their substructure can be resolved in a straightforward way. To explore the regulation of proteins and complexes, we analyzed microarray measurements of mRNA abundance, de novo transcription and decay. Based on the relationship between newly transcribed, pre-existing and total RNA, transcript half-life can be estimated for individual genes using a new microarray normalization method and a quality control can be applied. We show that precise measurements of RNA half-life can be obtained from de novo transcription which are of superior accuracy to previously published results from RNA decay. Using such precise measurements, we studied RNA half-lives in human B-cells and mouse fibroblasts to identify conserved patterns governing RNA turnover. Our results show that transcript half-lives are strongly conserved and specifically correlated to gene function. Although transcript half-life is highly similar in protein complexes and \mbox{families}, individual proteins may deviate significantly from the remaining complex subunits or family members to efficiently support the regulation of protein complexes or to create non-redundant roles of functionally similar proteins. These results illustrate several of the many ways in which high-throughput measurements lead to a better understanding of biological systems. By studying large-scale measure\-ments in this thesis, the structure of protein interaction networks and protein complexes could be better characterized, important interactions and conserved strategies for herpes\-viral infection could be identified and interesting insights could be gained into the regulation of important biological processes and protein complexes. This was made possible by the development of novel algorithms and analysis approaches which will also be valuable for further research on these topics

    Disentangling ecological networks in marine microbes

    Get PDF
    There is a myriad of microorganisms on Earth contributing to global biogeochemical cycles, and their interactions are considered pivotal for ecosystem function. Previous studies have already determined relationships between a limited number of microorganisms. Yet, we still need to understand a large number of interactions to increase our knowledge of complex microbiomes. This is challenging because of the vast number of possible interactions. Thus, microbial interactions still remain barely known to date. Networks are a great tool to handle the vast number of microorganisms and their connections, explore potential microbial interactions, and elucidate patterns of microbial ecosystems. This thesis locates at the intersection of network inference and network analysis. The presented methodology aims to support and advance marine microbial investigations by reducing noise and elucidating patterns in inferred association networks for subsequent biological down-stream analyses. This thesis’s main contribution to marine microbial interactions studies is the development of the program EnDED (Environmentally-Driven Edge Detection), a computational framework to identify environmentally-driven associations inside microbial association networks, inferred from omics datasets. We applied the methodology to a model marine microbial ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-Western Mediterranean Sea (ten years of monthly sampling). We also applied the methodology to a dataset compilation covering six global-ocean regions from the surface (3 m) to the deep ocean (down to 4539 m). Thus, our methodology provided a step towards studying the marine microbial distribution in space via the horizontal (ocean regions) and vertical (water column) axes.Hi ha una infinitat de microorganismes a la Terra que contribueixen als cicles biogeoquímics mundials i les seves interaccions es consideren fonamentals pel funcionament dels ecosistemes. Estudis previs ja han determinat les relacions entre un nombre limitat de microorganismes. Tot i això, encara hem d’entendre un gran nombre d’interaccions per augmentar el nostre coneixement dels microbiomes complexos. Això és un repte a causa del gran nombre d'interaccions possibles. Per això, les interaccions microbianes encara són poc conegudes fins ara. Les xarxes són una gran eina per tractar el gran nombre de microorganismes i les seves connexions, explorar interaccions microbianes potencials i dilucidar patrons d’ecosistemes microbians. Aquesta tesi es situa a la intersecció de la inferència de xarxes i l’anàlisi de la xarxes. La metodologia presentada té com a objectiu donar suport i avançar en investigacions microbianes marines reduint el soroll i dilucidant patrons en xarxes d’associació inferides per a posteriors anàlisis biològiques. La principal contribució d’aquesta tesi als estudis d’interaccions microbianes marines és el desenvolupament del programa EnDED (Environmentally-Driven Edge Detection), un marc computacional per identificar associacions impulsades pel medi ambient dins de xarxes d’associació microbiana, inferides a partir de conjunts de dades òmics. S’ha aplicat la metodologia a un model d’ecosistema microbià marí a l’Observatori Microbià de la Badia de Blanes (BBMO) al mar Mediterrani nord-occidental (deu anys de mostreig mensual). També s’ha la metodologia a una recopilació de dades que cobreix sis regions oceàniques globals des de la superfície (3 m) fins a l'oceà profund (fins a 4539 m).Hay una gran cantidad de microorganismos en la Tierra que contribuyen a los ciclos biogeoquímicos globales, y sus interacciones se consideran fundamentales para la función del ecosistema. Estudios previos ya han determinado relaciones entre un número limitado de microorganismos. Sin embargo, todavía necesitamos comprender una gran cantidad de interacciones para aumentar nuestro conocimiento de los microbiomas más complejos. Esto representa un gran desafío debido a la gran cantidad de posibles interacciones. Por lo tanto, las interacciones microbianas son aun poco conocidas. Las redes representan una gran herramienta para analizar la gran cantidad de microorganismos y sus conexiones, explorar posibles interacciones y dilucidar patrones en ecosistemas microbianos. Esta tesis se ubica en la intersección entre la inferencia de redes y el análisis de redes. La metodología presentada tiene como objetivo avanzar las investigaciones sobre interacciones microbianas marinas mediante la reducción del ruido en las inferencias de redes y elucidar patrones en redes de asociación permitiendo análisis biológicos posteriores. La principal contribución de esta tesis a los estudios de interacciones microbianas marinas es el desarrollo del programa EnDED (Environmentally-Driven Edge Detection), un marco computacional para identificar asociaciones generadas por el medio ambiente en redes de asociaciones microbianas, inferidas a partir de datos ómicos. Aplicamos la metodología a un modelo de ecosistema microbiano marino en el Observatorio Microbiano de la Bahía de Blanes (BBMO) en el Mar Mediterráneo Noroccidental (diez años de muestreo mensual). También, aplicamos la metodología a una compilación de conjuntos de datos que cubren seis regiones oceánicas globales desde la superficie (3 m) hasta las profundidades del océano (hasta 4539 m). Por lo tanto, nuestra metodología significa un paso adelante hacia de los patrones temporales microbianos marinos y el estudio de la distribución microbiana marina en el espacio a través de los ejes horizontal (regiones oceánicas) y vertical (columna de agua). Para llegar a hipótesis de interacción precisas, es importante determinar, cuantificar y eliminar las asociaciones generadas por el medio ambiente en las redes de asociaciones microbianas marinas. Además, nuestros resultados subrayaron la necesidad de estudiar la naturaleza dinámica de las redes, en contraste con el uso de redes estáticas únicas agregadas en el tiempo o el espacio. Nuestras nuevas metodologías pueden ser utilizadas por una amplia gama de investigadores que investigan redes e interacciones en diversos microbiomas.Postprint (published version

    De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes

    Get PDF
    Background Euphorbia fischeriana is an important medicinal plant found in Northeast China. The plant roots contain many medicinal compounds including 12-deoxyphorbol-13-acetate, commonly known as prostratin that is a phorbol ester from the tigliane diterpene series. Prostratin is a protein kinase C activator and is effective in the treatment of Human Immunodeficiency Virus (HIV) by acting as a latent HIV activator. Latent HIV is currently the biggest limitation for viral eradication. The aim of this study was to sequence, assemble and annotate the E. fischeriana transcriptome to better understand the potential biochemical pathways leading to the synthesis of prostratin and other related diterpene compounds. Results In this study we conducted a high throughput RNA-seq approach to sequence the root transcriptome of E. fischeriana. We assembled 18,180 transcripts, of these the majority encoded protein-coding genes and only 17 transcripts corresponded to known RNA genes. Interestingly, we identified 5,956 protein-coding transcripts with high similarity (>=75%) to Ricinus communis, a close relative to E. fischeriana. We also evaluated the conservation of E. fischeriana genes against EST datasets from the Euphorbeacea family, which included R. communis, Hevea brasiliensis and Euphorbia esula. We identified a core set of 1,145 gene clusters conserved in all four species and 1,487 E. fischeriana paralogous genes. Furthermore, we screened E. fischeriana transcripts against an in-house reference database for genes implicated in the biosynthesis of upstream precursors to prostratin. This identified 24 and 9 candidate transcripts involved in the terpenoid and diterpenoid biosyntehsis pathways, respectively. The majority of the candidate genes in these pathways presented relatively low expression levels except for 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS) and isopentenyl diphosphate/dimethylallyl diphosphate synthase (IDS), which are required for multiple downstream pathways including synthesis of casbene, a proposed precursor to prostratin. Conclusion The resources generated in this study provide new insights into the upstream pathways to the synthesis of prostratin and will likely facilitate functional studies aiming to produce larger quantities of this compound for HIV research and/or treatment of patients

    Biomarker lists stability in genomic studies: analysis and improvement by prior biological knowledge integration into the learning process

    Get PDF
    The analysis of high-throughput sequencing, microarray and mass spectrometry data has been demonstrated extremely helpful for the identification of those genes and proteins, called biomarkers, helpful for answering to both diagnostic/prognostic and functional questions. In this context, robustness of the results is critical both to understand the biological mechanisms underlying diseases and to gain sufficient reliability for clinical/pharmaceutical applications. Recently, different studies have proved that the lists of identified biomarkers are poorly reproducible, making the validation of biomarkers as robust predictors of a disease a still open issue. The reasons of these differences are referable to both data dimensions (few subjects with respect to the number of features) and heterogeneity of complex diseases, characterized by alterations of multiple regulatory pathways and of the interplay between different genes and the environment. Typically in an experimental design, data to analyze come from different subjects and different phenotypes (e.g. normal and pathological). The most widely used methodologies for the identification of significant genes related to a disease from microarray data are based on computing differential gene expression between different phenotypes by univariate statistical tests. Such approach provides information on the effect of specific genes as independent features, whereas it is now recognized that the interplay among weakly up/down regulated genes, although not significantly differentially expressed, might be extremely important to characterize a disease status. Machine learning algorithms are, in principle, able to identify multivariate nonlinear combinations of features and have thus the possibility to select a more complete set of experimentally relevant features. In this context, supervised classification methods are often used to select biomarkers, and different methods, like discriminant analysis, random forests and support vector machines among others, have been used, especially in cancer studies. Although high accuracy is often achieved in classification approaches, the reproducibility of biomarker lists still remains an open issue, since many possible sets of biological features (i.e. genes or proteins) can be considered equally relevant in terms of prediction, thus it is in principle possible to have a lack of stability even by achieving the best accuracy. This thesis represents a study of several computational aspects related to biomarker discovery in genomic studies: from the classification and feature selection strategies to the type and the reliability of the biological information used, proposing new approaches able to cope with the problem of the reproducibility of biomarker lists. The study has highlighted that, although reasonable and comparable classification accuracy can be achieved by different methods, further developments are necessary to achieve robust biomarker lists stability, because of the high number of features and the high correlation among them. In particular, this thesis proposes two different approaches to improve biomarker lists stability by using prior information related to biological interplay and functional correlation among the analyzed features. Both approaches were able to improve biomarker selection. The first approach, using prior information to divide the application of the method into different subproblems, improves results interpretability and offers an alternative way to assess lists reproducibility. The second, integrating prior information in the kernel function of the learning algorithm, improves lists stability. Finally, the interpretability of results is strongly affected by the quality of the biological information available and the analysis of the heterogeneities performed in the Gene Ontology database has revealed the importance of providing new methods able to verify the reliability of the biological properties which are assigned to a specific feature, discriminating missing or less specific information from possible inconsistencies among the annotations. These aspects will be more and more deepened in the future, as the new sequencing technologies will monitor an increasing number of features and the number of functional annotations from genomic databases will considerably grow in the next years.L’analisi di dati high-throughput basata sull’utilizzo di tecnologie di sequencing, microarray e spettrometria di massa si è dimostrata estremamente utile per l’identificazione di quei geni e proteine, chiamati biomarcatori, utili per rispondere a quesiti sia di tipo diagnostico/prognostico che funzionale. In tale contesto, la stabilità dei risultati è cruciale sia per capire i meccanismi biologici che caratterizzano le malattie sia per ottenere una sufficiente affidabilità per applicazioni in campo clinico/farmaceutico. Recentemente, diversi studi hanno dimostrato che le liste di biomarcatori identificati sono scarsamente riproducibili, rendendo la validazione di tali biomarcatori come indicatori stabili di una malattia un problema ancora aperto. Le ragioni di queste differenze sono imputabili sia alla dimensione dei dataset (pochi soggetti rispetto al numero di variabili) sia all’eterogeneità di malattie complesse, caratterizzate da alterazioni di più pathway di regolazione e delle interazioni tra diversi geni e l’ambiente. Tipicamente in un disegno sperimentale, i dati da analizzare provengono da diversi soggetti e diversi fenotipi (e.g. normali e patologici). Le metodologie maggiormente utilizzate per l’identificazione di geni legati ad una malattia si basano sull’analisi differenziale dell’espressione genica tra i diversi fenotipi usando test statistici univariati. Tale approccio fornisce le informazioni sull’effetto di specifici geni considerati come variabili indipendenti tra loro, mentre è ormai noto che l’interazione tra geni debolmente up/down regolati, sebbene non differenzialmente espressi, potrebbe rivelarsi estremamente importante per caratterizzare lo stato di una malattia. Gli algoritmi di machine learning sono, in linea di principio, capaci di identificare combinazioni non lineari delle variabili e hanno quindi la possibilità di selezionare un insieme più dettagliato di geni che sono sperimentalmente rilevanti. In tale contesto, i metodi di classificazione supervisionata vengono spesso utilizzati per selezionare i biomarcatori, e diversi approcci, quali discriminant analysis, random forests e support vector machines tra altri, sono stati utilizzati, soprattutto in studi oncologici. Sebbene con tali approcci di classificazione si ottenga un alto livello di accuratezza di predizione, la riproducibilità delle liste di biomarcatori rimane ancora una questione aperta, dato che esistono molteplici set di variabili biologiche (i.e. geni o proteine) che possono essere considerati ugualmente rilevanti in termini di predizione. Quindi in teoria è possibile avere un’insufficiente stabilità anche raggiungendo il massimo livello di accuratezza. Questa tesi rappresenta uno studio su diversi aspetti computazionali legati all’identificazione di biomarcatori in genomica: dalle strategie di classificazione e di feature selection adottate alla tipologia e affidabilità dell’informazione biologica utilizzata, proponendo nuovi approcci in grado di affrontare il problema della riproducibilità delle liste di biomarcatori. Tale studio ha evidenziato che sebbene un’accettabile e comparabile accuratezza nella predizione può essere ottenuta attraverso diversi metodi, ulteriori sviluppi sono necessari per raggiungere una robusta stabilità nelle liste di biomarcatori, a causa dell’alto numero di variabili e dell’alto livello di correlazione tra loro. In particolare, questa tesi propone due diversi approcci per migliorare la stabilità delle liste di biomarcatori usando l’informazione a priori legata alle interazioni biologiche e alla correlazione funzionale tra le features analizzate. Entrambi gli approcci sono stati in grado di migliorare la selezione di biomarcatori. Il primo approccio, usando l’informazione a priori per dividere l’applicazione del metodo in diversi sottoproblemi, migliora l’interpretabilità dei risultati e offre un modo alternativo per verificare la riproducibilità delle liste. Il secondo, integrando l’informazione a priori in una funzione kernel dell’algoritmo di learning, migliora la stabilità delle liste. Infine, l’interpretabilità dei risultati è fortemente influenzata dalla qualità dell’informazione biologica disponibile e l’analisi delle eterogeneità delle annotazioni effettuata sul database Gene Ontology rivela l’importanza di fornire nuovi metodi in grado di verificare l’attendibilità delle proprietà biologiche che vengono assegnate ad una specifica variabile, distinguendo la mancanza o la minore specificità di informazione da possibili inconsistenze tra le annotazioni. Questi aspetti verranno sempre più approfonditi in futuro, dato che le nuove tecnologie di sequencing monitoreranno un maggior numero di variabili e il numero di annotazioni funzionali derivanti dai database genomici crescer`a considerevolmente nei prossimi anni

    PRIN: a predicted rice interactome network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions play a fundamental role in elucidating the molecular mechanisms of biomolecular function, signal transductions and metabolic pathways of living organisms. Although high-throughput technologies such as yeast two-hybrid system and affinity purification followed by mass spectrometry are widely used in model organisms, the progress of protein-protein interactions detection in plants is rather slow. With this motivation, our work presents a computational approach to predict protein-protein interactions in <it>Oryza sativa</it>.</p> <p>Results</p> <p>To better understand the interactions of proteins in <it>Oryza sativa</it>, we have developed PRIN, a Predicted Rice Interactome Network. Protein-protein interaction data of PRIN are based on the interologs of six model organisms where large-scale protein-protein interaction experiments have been applied: yeast (<it>Saccharomyces cerevisiae</it>), worm (<it>Caenorhabditis elegans</it>), fruit fly (<it>Drosophila melanogaster</it>), human (<it>Homo sapiens</it>), <it>Escherichia coli </it>K12 and <it>Arabidopsis thaliana</it>. With certain quality controls, altogether we obtained 76,585 non-redundant rice protein interaction pairs among 5,049 rice proteins. Further analysis showed that the topology properties of predicted rice protein interaction network are more similar to yeast than to the other 5 organisms. This may not be surprising as the interologs based on yeast contribute nearly 74% of total interactions. In addition, GO annotation, subcellular localization information and gene expression data are also mapped to our network for validation. Finally, a user-friendly web interface was developed to offer convenient database search and network visualization.</p> <p>Conclusions</p> <p>PRIN is the first well annotated protein interaction database for the important model plant <it>Oryza sativa</it>. It has greatly extended the current available protein-protein interaction data of rice with a computational approach, which will certainly provide further insights into rice functional genomics and systems biology.</p> <p>PRIN is available online at <url>http://bis.zju.edu.cn/prin/</url>.</p

    Disjunctive shared information between ontology concepts: application to Gene Ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The large-scale effort in developing, maintaining and making biomedical ontologies available motivates the application of similarity measures to compare ontology concepts or, by extension, the entities described therein. A common approach, known as semantic similarity, compares ontology concepts through the information content they share in the ontology. However, different disjunctive ancestors in the ontology are frequently neglected, or not properly explored, by semantic similarity measures.</p> <p>Results</p> <p>This paper proposes a novel method, dubbed DiShIn, that effectively exploits the multiple inheritance relationships present in many biomedical ontologies. DiShIn calculates the shared information content of two ontology concepts, based on the information content of the disjunctive common ancestors of the concepts being compared. DiShIn identifies these disjunctive ancestors through the number of distinct paths from the concepts to their common ancestors.</p> <p>Conclusions</p> <p>DiShIn was applied to Gene Ontology and its performance was evaluated against state-of-the-art measures using CESSM, a publicly available evaluation platform of protein similarity measures. By modifying the way traditional semantic similarity measures calculate the shared information content, DiShIn was able to obtain a statistically significant higher correlation between semantic and sequence similarity. Moreover, the incorporation of DiShIn in existing applications that exploit multiple inheritance would reduce their execution time.</p

    Leveraging expression and network data for protein function prediction

    Get PDF
    2012 Summer.Includes bibliographical references.Protein function prediction is one of the prominent problems in bioinformatics today. Protein annotation is slowly falling behind as more and more genomes are being sequenced. Experimental methods are expensive and time consuming, which leaves computational methods to fill the gap. While computational methods are still not accurate enough to be used without human supervision, this is the goal. The Gene Ontology (GO) is a collection of terms that are the standard for protein function annotations. Because of the structure of GO, protein function prediction is a hierarchical multi-label classification problem. The classification method used in this thesis is GOstruct, which performs structured predictions that take into account all GO terms. GOstruct has been shown to work well, but there are still improvements to be made. In this thesis, I work to improve predictions by building new kernels from the data that are used by GOstruct. To do this, I find key representations of the data that help define what kernels perform best on the variety of data types. I apply this methodology to function prediction in two model organisms, Saccharomyces cerevisiae and Mus musculus, and found better methods for interpreting the data

    A transversal approach to predict gene product networks from ontology-based similarity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression.</p> <p>Results</p> <p>The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity.</p> <p>Conclusion</p> <p>Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression.</p

    PathFinder: mining signal transduction pathway segments from protein-protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Signal transduction pathway is the chain of processes by which a cell converts an extracellular signal into a response. In most unicellular organisms, the number of signal transduction pathways influences the number of ways the cell can react and respond to the environment. Discovering signal transduction pathways is an arduous problem, even with the use of systematic genomic, proteomic and metabolomic technologies. These techniques lead to an enormous amount of data and how to interpret and process this data becomes a challenging computational problem.</p> <p>Results</p> <p>In this study we present a new framework for identifying signaling pathways in protein-protein interaction networks. Our goal is to find biologically significant pathway segments in a given interaction network. Currently, protein-protein interaction data has excessive amount of noise, e.g., false positive and false negative interactions. First, we eliminate false positives in the protein-protein interaction network by integrating the network with microarray expression profiles, protein subcellular localization and sequence information. In addition, protein families are used to repair false negative interactions. Then the characteristics of known signal transduction pathways and their functional annotations are extracted in the form of association rules.</p> <p>Conclusion</p> <p>Given a pair of starting and ending proteins, our methodology returns candidate pathway segments between these two proteins with possible missing links (recovered false negatives). In our study, <it>S. cerevisiae </it>(yeast) data is used to demonstrate the effectiveness of our method.</p
    • …
    corecore