177 research outputs found

    Renegotiation based dynamic bandwidth allocation for selfsimilar VBR traffic

    Get PDF
    The provision of QoS to applications traffic depends heavily on how different traffic types are categorized and classified, and how the prioritization of these applications are managed. Bandwidth is the most scarce network resource. Therefore, there is a need for a method or system that distributes an available bandwidth in a network among different applications in such a way that each class or type of traffic receives their constraint QoS requirements. In this dissertation, a new renegotiation based dynamic resource allocation method for variable bit rate (VBR) traffic is presented. First, pros and cons of available off-line methods that are used to estimate selfsimilarity level (represented by Hurst parameter) of a VBR traffic trace are empirically investigated, and criteria to select measurement parameters for online resource management are developed. It is shown that wavelet analysis based methods are the strongest tools in estimation of Hurst parameter with their low computational complexities, compared to the variance-time method and R/S pox plot. Therefore, a temporal energy distribution of a traffic data arrival counting process among different frequency sub-bands is considered as a traffic descriptor, and then a robust traffic rate predictor is developed by using the Haar wavelet analysis. The empirical results show that the new on-line dynamic bandwidth allocation scheme for VBR traffic is superior to traditional dynamic bandwidth allocation methods that are based on adaptive algorithms such as Least Mean Square, Recursive Least Square, and Mean Square Error etc. in terms of high utilization and low queuing delay. Also a method is developed to minimize the number of bandwidth renegotiations to decrease signaling costs on traffic schedulers (e.g. WFQ) and networks (e.g. ATM). It is also quantified that the introduced renegotiation based bandwidth management scheme decreases heavytailedness of queue size distributions, which is an inherent impact of traffic self similarity. The new design increases the achieved utilization levels in the literature, provisions given queue size constraints and minimizes the number of renegotiations simultaneously. This renegotiation -based design is online and practically embeddable into QoS management blocks, edge routers and Digital Subscriber Lines Access Multiplexers (DSLAM) and rate adaptive DSL modems

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl

    Video traffic : characterization, modelling and transmission

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Transport Layer Optimizations for Heterogeneous Wireless Multimedia Networks

    Get PDF
    The explosive growth of the Internet during the last few years, has been propelled by the TCP/IP protocol suite and the best effort packet forwarding service. However, quality of service (QoS) is far from being a reality especially for multimedia services like video streaming and video conferencing. In the case of wireless and mobile networks, the problem becomes even worse due to the physics of the medium, resulting into further deterioration of the system performance. Goal of this dissertation is the systematic development of comprehensive models that jointly characterize the performance of transport protocols and media delivery in heterogeneous wireless networks. At the core of our novel methodology, is the use of analytical models for driving the design of media transport algorithms, so that the delivery of conversational and non-interactive multimedia data is enhanced in terms of throughput, delay, and jitter. More speciffically, we develop analytical models that characterize the throughput and goodput of the transmission control protocol (TCP) and the transmission friendly rate control (TFRC) protocol, when CBR and VBR multimedia workloads are considered. Subsequently, we enhance the transport protocol models with new parameters that capture the playback buffer performance and the expected video distortion at the receiver. In this way a complete end-to-end model for media streaming is obtained. This model is used as a basis for a new algorithm for rate-distortion optimized mode selection in video streaming appli- cations. As a next step, we extend the developed models for the aforementioned protocols, so that heterogeneous wireless networks can be accommodated. Subsequently, new algorithms are proposed in order to enhance the developed media streaming algorithms when heterogeneous wireless networks are also included. Finally, the aforementioned models and algorithms are extended for the case of concurrent multipath media transport over several hybrid wired/wireless links.Ph.D.Committee Chair: Vijay Madisetti; Committee Member: Raghupathy Sivakumar; Committee Member: Sudhakar Yalamanchili; Committee Member: Umakishore Ramachandran; Committee Member: Yucel Altunbasa

    System level performance of ATM transmission over a DS-CDMA satellite link.

    Get PDF
    PhDAbstract not availableEuropean Space Agenc

    An intelligent approach to quality of service for MPEG-4 video transmission in IEEE 802.15.1

    Get PDF
    Nowadays, wireless connectivity is becoming ubiquitous spreading to companies and in domestic areas. IEEE 802.15.1 commonly known as Bluetooth is high-quality, high-security, high-speed and low-cost radio signal technology. This wireless technology allows a maximum access range of 100 meters yet needs power as low as 1mW. Regrettably, IEEE 802.15.1 has a very limited bandwidth. This limitation can become a real problem If the user wishes to transmit a large amount of data in a very short time. The version 1.2 which is used in this project could only carry a maximum download rate of 724Kbps and an upload rate of 54Kbps In its asynchronous mode. But video needs a very large bandwidth to be transmitted with a sufficient level of quality. Video transmission over IEEE 802.15.1 networks would therefore be difficult to achieve, due to the limited bandwidth. Hence, a solution to transmit digital video with a sufficient quality of picture to arrive at the receiving end is required. A hybrid scheme has been developed in this thesis, comprises of a fuzzy logic set of rules and an artificial neural network algorithms. MPEG-4 video compression has been used in this work to optimise the transmission. This research further utilises an ‘added-buffer’ to prevent excessive data loss of MPEG-4 video over IEEE 802.15.1transmission and subsequently increase picture quality. The neural-fuzzy scheme regulates the output rate of the added-buffer to ensure that MPEG-4 video stream conforms to the traffic conditions of the IEEE 802.15.1 channel during the transmission period, that is to send more data when the bandwidth is not fully used and keep the data in the buffers if the bandwidth is overused. Computer simulation results confirm that intelligence techniques and added-buffer do improve quality of picture, reduce data loss and communication delay, as compared with conventional MPEG video transmission over IEEE 802.15.1

    Rate Control in Video Coding

    Get PDF
    corecore