
Transport Layer Optimizations for Heterogeneous Wireless

Multimedia Networks

A Thesis
Presented to

The Academic Faculty

by

Antonios Argyriou

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2005

Transport Layer Optimizations for Heterogeneous Wireless

Multimedia Networks

Approved by:

Professor Vijay Madisetti, Advisor
School of Electrical and Computer Engineering
Georgia Institute of Technology

Professor Yucel Altunbasak
School of Electrical and Computer Engineering
Georgia Institute of Technology

Professor Raghupathy Sivakumar
School of Electrical and Computer Engineering
Georgia Institute of Technology

Professor Sudhakar Yalamanchili
School of Electrical and Computer Engineering
Georgia Institute of Technology

Professor Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Date Approved: August 19, 2005

To my family.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Madisetti, for his assistance, continuing support,

and encouragement throughout my years in the Ph.D. program. I would also like to thank

Dr. Sivakumar, and Dr. Altunbasak, for serving in my reading committee and for their

suggestions during the preparation of this thesis.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xiii

SUMMARY . xiv

I INTRODUCTION . 1

II BACKGROUND . 6

2.1 Mobile and Wireless Networks . 6

2.2 Internet Transport Protocols . 8

2.2.1 Transmission Control Protocol . 9

2.2.2 TCP Friendly Rate Control . 10

2.2.3 Stream Control Transmission Protocol 12

2.3 Multimedia Communication Systems . 13

2.3.1 Video Coding . 16

2.3.2 Video Streaming . 18

III TRANSPORT PROTOCOL MODELS FOR CBR AND VBR WORK-
LOADS . 21

3.1 Introduction . 21

3.2 Network Model and Assumptions . 22

3.3 TCP Throughput Model for CBR Workload 24

3.4 TCP Throughput for VBR Workload . 28

3.5 TFRC Throughput and Latency Model . 31

3.6 Numerical Results and Simulations . 33

3.6.1 TFRC with Elastic Traffic (Wireline) 34

3.6.2 TCP and TFRC with CBR and VBR Traffic (Wireline) 35

3.6.3 TCP and TFRC with CBR and VBR Traffic (Wireless) 37

3.7 Conclusions . 39

v

IV RATE-DISTORTION OPTIMIZED UNICAST VIDEO STREAMING
WITH TCP . 41

4.1 Introduction . 41

4.2 System Overview . 43

4.3 Path Model and Packet Loss Estimation 45

4.4 Analytical Model of the Expected Video Decoder Distortion 47

4.4.1 Rate Distortion Optimized Mode Selection (RDOMS) 50

4.4.2 Experiments . 51

4.5 Playback Buffering and Transport Protocol Performance Models 52

4.5.1 Experiments . 56

4.6 RD Optimized Packet Scheduling . 59

4.6.1 Experiments . 60

4.7 Conclusions . 62

V MODELING THE EFFECT OF HANDOFFS ON TRANSPORT PRO-
TOCOL PERFORMANCE . 64

5.1 Introduction . 64

5.2 Transport Protocol Performance Models 66

5.2.1 Heterogeneous Network Model . 66

5.2.2 Handoff Scenario and TCP Behavior 67

5.2.3 Handoff Induced Packet Loss . 68

5.2.4 TCP Throughput . 70

5.2.5 TCP Latency and Jitter in Congestion Avoidance 73

5.2.6 TFRC Throughput and Latency . 74

5.3 Simulations . 77

5.3.1 Results for Mobile IP . 77

5.3.2 Results for HMIP and MIP-RO . 79

5.3.3 Recovery Period . 81

5.4 Conclusions . 81

VI VIDEO STREAMING IN HETEROGENEOUS MOBILE WIRELESS
NETWORKS . 83

6.1 Introduction . 84

6.2 Related Work . 85

vi

6.3 System Model . 87

6.4 Performance Analysis Model . 89

6.4.1 Latency . 89

6.4.2 Joint Latency and Playback Buffer Model 93

6.4.3 Effect of Mobility Protocols . 94

6.5 Protocol for Unicast Media Streaming in Heterogeneous Networks 96

6.5.1 Experiments . 99

6.6 Proactive Soft-Handoff of Media Flows . 103

6.6.1 Handoff Algorithm . 104

6.6.2 Simulations . 105

6.7 Conclusions . 109

VII MULTIPATH TRANSPORT PROTOCOL MODELS FOR WIRELESS
VIDEO STREAMING . 111

7.1 Introduction . 111

7.2 Related Work . 113

7.3 TCP Latency Model for Multiple Asymmetric Paths 114

7.3.1 Latency Model . 115

7.3.2 Playback Buffer Model . 119

7.4 Multipath Video Streaming and Adaptive Playback 120

7.4.1 Experimental Setup . 121

7.4.2 Experiments . 122

7.5 Analytically-Driven Multipath Video Scheduling Algorithm 123

7.5.1 Experiments . 125

7.5.2 Comparison with MDC . 127

7.6 Multipath ARQ of Video Packets . 128

7.6.1 Experiments . 128

7.7 Conclusions . 129

VIIICONCLUSIONS . 131

APPENDIX A — TCP RECEIVER MODEL 135

APPENDIX B — MOBILITY PROTOCOL MODELS 138

vii

REFERENCES . 141

viii

LIST OF TABLES

1 Comparison of radio access networks. 8

2 Features of traffic characterization models. 23

3 Vertical handoff latencies between heterogeneous wireless networks. 99

4 Model parameters used for the video streaming experiments. 100

5 Model parameters used for the multipath video streaming experiments. . . 122

ix

LIST OF FIGURES

1 Heterogeneous wireless network architecture. 2

2 Dissertation organization. 3

3 Cross layer design for multimedia communication systems [37]. 14

4 Components of a typical wireless video communication system. 15

5 Block diagram of a typical hybrid-based video encoder. 17

6 System model for heterogeneous traffic workloads. 23

7 Packet-level TCP behavior of a CBR flow at the sender. 25

8 Congestion window evolution for TCP with a VBR flow. 30

9 The TFRC rate estimation algorithm. 31

10 Packet-level TFRC behavior of a CBR flow at the sender. 33

11 Simulations for TFRC receiver model validation. Parameters: p = 0.02,
RTO0 = 1 sec, s = 1500 bytes. 34

12 Analytical results and simulations for TFRC latency model validation. Pa-
rameters: RTT0 = 1 sec, s = 1500 bytes. 34

13 Cumulative fraction of the end-to-end throughput for VBR workload with
buffer occupancy F = 90%. Parameters: RTO0 = 200 ms, W0 = 1 segment,
Wmax = 6 MB, RTT0 = 1 sec, s = 1500 bytes. 36

14 Cumulative fraction of the end-to-end throughput for VBR workload with
buffer occupancy F = 50%. Parameters: RTO0 = 200 ms, W0 = 1 segment,
Wmax = 6 MB, RTT0 = 1 sec, s = 1500 bytes. 36

15 Cumulative fraction of the end-to-end jitter for TFRC. Parameters: RTT0 =
1 sec, s = 1500 bytes. 37

16 Throughput as a function of the CBR rate µ (x-axis) and wireless/wired
packet loss ratio (y-axis). pk = 0.001 and pw varies from 0.001 to 0.02. . . . 38

17 Throughput as a function of the VBR load F. 39

18 Proposed real-time media streaming architecture based on TCP. 44

19 Packetization of encoded macroblocks . 48

20 Experimental setup for real-time video streaming. 52

21 PSNR as a function of the end-to-end packet loss probability for video stream-
ing with TCP. 53

22 Sender, receiver, and playback buffer curves. 53

x

23 Probability for the buffer not underflowing for varying packet loss rate and
the allowed packet delivery bound with TCP. 56

24 Numerical and simulation results for validating the playback buffer model.
Parameters: RTO0 = 200 ms, MSS = 1460 bytes, W0 = 1 segment, Wmax =
6 MB, video duration of 100 sec. 56

25 Buffer size evolution at the receiver with cross traffic of three FTP/TCP flows. 58

26 Experimental results of the required initial delay ∆ needed to achieve a
BUP<0.01. 58

27 Pseudo algorithm for two-stage optimal schedule construction at the stream-
ing server. 61

28 Results for streaming experiment with the proposed RD optimized packet
scheduling algortihm. 61

29 Captured frames for the proposed RD optimized packet scheduling algorithm. 62

30 End-to-end path model for transport protocol characterization during handoffs. 66

31 Packet-level TCP behavior during IP layer handoff. 68

32 TFRC packet-level behavior during IP layer handoff. 74

33 The TFRC rate estimation algorithm. 75

34 Simulation topology for WLAN handoff experiments. 78

35 Analytical results for TCP and TFRC during handoff with Mobile IP as a
function of the packet loss rate. Parameters: RTT (1) = 400 ms, RTO

(1)
0 =

800 ms, RTT (2) = 800 ms, RTO
(2)
0 = 1600 ms, W0 = 1 segment, s = 1000

bytes, Wmax = 4 MB. 78

36 Effect of disruption time on throughput for a session with a duration of 15
seconds. Parameters: RTT = 1 sec, RTO0 = 1 sec, plr = 0.02, s = 1500
bytes, MSS = 1460 bytes, W0 = 1 segment, Wmax = 4 MB. 79

37 Effect of disruption time on TCP and TFRC latency for a session with a
duration of 10 seconds. Parameters: RTT = 200 ms, RTO0 = 400 ms,
plr = 0.02, s = 1500 bytes, MSS = 1460 bytes, W0 = 1 segment, Wmax = 4
MB . 80

38 Required recovery time versus disruption time for both TCP and TFRC. . . 81

39 Simplified wireless media streaming architecture. 85

40 System model for joint transport protocol and video streaming characteriza-
tion during handoffs. 88

41 Packet-level TCP behavior at the sender during IP layer handoff. 90

42 Protocol operation at the client. 97

43 Protocol operation at the server. 98

xi

44 Buffer underflow rate for WLAN→WLAN handoff. 100

45 Video quality expressed though the percentage of the dropped frames at the
server. 101

46 Video quality expressed though the PSNR at the mobile client. 102

47 Effect of the client feedback rate. 103

48 The SCTP-based cross-layer media session handoff (MSH) algorithm. 105

49 Vertical handoff from GPRS to UMTS link. 105

50 Vertical handoff from UMTS to GPRS link. 106

51 Vertical handoff from UMTS to GPRS link with a forwarding buffer. 107

52 Jitter for handoff experiment with CBR flows from a UMTS to WLAN link. 107

53 Jitter for handoff experiment with CBR flows. 108

54 Jitter for one SCTP/VoIP flow in the 802.11b WLAN. 108

55 Jitter for one SCTP/VoIP and 3 TCP flows in the 802.11b WLAN. 109

56 The proposed multipath streaming architecture based on TCP. 112

57 Channel model with multiple access and core networks. 115

58 Packet-level TCP behavior at the sender during IP layer handoff. 116

59 Proposed playback adaptation algorithm for multipath transmission with TCP.121

60 Analytical and experimental results for the multipath playback adaptation
algorithm with TCP. TCP parameters: RTO0 = 200 ms, MSS = 1460 bytes,
W0 = 1 segment, Wmax = 6 MB, video duration is 100 sec. 122

61 Proposed multipath scheduling algorithm with transport protocol awareness. 124

62 Throughput as a function of the load on two concurrently used paths. Pa-
rameters: RTT = 500 ms, plr = 0.02, RTO0 = 200 ms, MSS=1460 bytes,
W0 = 1 segment, Wmax = 4 MB . 125

63 Mean time between buffer underflow (MTBBU) events for multipath me-
dia transport with TCP. WLAN parameters: link buffer size = 20 pkts,
link delay = 10 ms, bitrate = 6 Mbps. 126

64 Distortion-rate performance results for QCIF AKIYO. 127

65 Analytical and simulation results for the multipath retransmission algorithm. 129

xii

ABBREVIATIONS

CBR Constant Bit Rate.

FEC Forward Error Correction.

GPRS General Packet Radio Service.

IETF Internet Engineering Task Force.

MAN Metropolitan Area Network.

MPEG Motion Picture Experts Group.

MSS Maximum Segment Size.

OFDM Orthogonal Frequency-Division Multiplexing.

QoS Quality of Service.

RAN Radio Access Networks.

RTP Real-Time Transport Protocol.

SCTP Stream Control Transmission Protocol.

TCP Transmission Control Protocol.

TFRC TCP Friendly Rate Control.

UMTS Universal Mobile Telecommunications System.

WLAN Wireless Local Area Network.

xiii

SUMMARY

The explosive growth of the Internet during the last few years, has been propelled by

the TCP/IP protocol suite and the best effort packet forwarding service. However, quality

of service (QoS) is far from being a reality especially for multimedia services like video

streaming and video conferencing. In the case of wireless and mobile networks, the problem

becomes even worse due to the physics of the medium, resulting into further deterioration

of the system performance.

Goal of this dissertation is the systematic development of comprehensive models that

jointly characterize the performance of transport protocols and media delivery in hetero-

geneous wireless networks. At the core of our novel methodology, is the use of analytical

models for driving the design of media transport algorithms, so that the delivery of con-

versational and non-interactive multimedia data is enhanced in terms of throughput, delay,

and jitter. More specifically, we develop analytical models that characterize the throughput

and goodput of the transmission control protocol (TCP) and the transmission friendly rate

control (TFRC) protocol, when CBR and VBR multimedia workloads are considered. Sub-

sequently, we enhance the transport protocol models with new parameters that capture the

playback buffer performance and the expected video distortion at the receiver. In this way

a complete end-to-end model for media streaming is obtained. This model is used as a basis

for a new algorithm for rate-distortion optimized mode selection in video streaming appli-

cations. As a next step, we extend the developed models for the aforementioned protocols,

so that heterogeneous wireless networks can be accommodated. Subsequently, new algo-

rithms are proposed in order to enhance the developed media streaming algorithms when

heterogeneous wireless networks are also included. Finally, the aforementioned models and

algorithms are extended for the case of concurrent multipath media transport over several

hybrid wired/wireless links.

xiv

CHAPTER I

INTRODUCTION

During the past few years, we have witnessed an unprecedented growth in the number of

wireless users, applications, and network access technologies. Typical mobile users nowa-

days, have access to various types of wireless networks that may be cellular networks,

wireless local area networks (WLAN), metropolitan area networks (MAN), home networks,

or even mobile ad-hoc networks (figure 1). These networks are usually accessible through

different types of terminals (mobile phones, PDAs, notebooks). However, as the wireless

and mobile market matures from the early adopters to normal users, new services will

be demanded. These demands are converging towards the demands that exist for wired

telecommunications services. With the availability of these wireless services, the location is

no longer of importance to private users. Thus, the demand of mobile users connected over

wireless networks will approach this mixture of services. With the omnipresence of wireless

services, the usage schemes will become independent from location and connection type.

In this mixed environment, feature-rich real-time media applications like video confer-

encing, videophony, and video streaming will have to be supported. These kinds of applica-

tions have strict end-to-end delay constraints, which is usually less than 200 milliseconds.

However, as wireless networks are quickly becoming an important component of the modern

communications infrastructure, IP will be the key technology that will drive the unification

of the next generation mobile/wireless systems by being able to support high-speed data,

Internet access, and multimedia streaming on all-IP networks. Therefore, CDMA2000 and

UMTS 3G cellular networks [1], metropolitan area networks like 802.16 [103], and high

bit-rate WLANs (54 and 11 Mbps in IEEE 802.11a and 802.11b respectively) will coexist

in the future. All the above-mentioned cutting-edge developments however, confront the

high technical hurdles associated with high bit rate, quality of service (QoS), and real-time

requirements of video applications [110, 104]. Therefore, the traditional protocol stacks

1

IP/ATM/MPLS backbone

3G access
network

WLAN

FA, DHCP

SGSN

Mobile hosts
Ad-hoc networks

Broadband gateway
xDSL, cable

Figure 1: Heterogeneous wireless network architecture.

have to be re-engineered, by designing more flexible and generic communication protocols.

In this dissertation we are concerned with protocols that operate at the transport layer,

as defined as part of the OSI stack [78], and their interactions with media applications.

More specifically, we focus on TCP, and two recently standardized IETF protocols, namely

the stream control transmission protocol (SCTP) [101], and the TCP-friendly rate con-

trol protocol (TFRC) [46]. Our objective is to design algorithms that optimize wireless

multimedia delivery by carefully considering the behavior of the aforementioned transport

protocols. Initially we develop stochastic models that characterize the performance of these

transport protocols for a variety of wireless inter-networking scenarios. Subsequently, by

following the end-to-end principle [23], we present the design of algorithms that push all the

necessary functionality to the endpoints. Our protocols handle video streaming functions at

the endpoints in an end-to-end fashion and optimize crucial metrics such as latency, band-

width utilization, and jitter, between two hosts that communicate with a unicast session

over wired/wireless IP-based networks. An outline of every chapter in this dissertation is

given next, while figure 2 visualizes the organization of this dissertation.

Transport Protocol Models for CBR and VBR Workloads: In this part of the

2

Workload and transport
protocol model (Chapter III)

Handoff and transport
protocol model (Chapter V)

M
od

el
 e

vo
lu

tio
n

Media streaming protocol
(Chapter IV)

Models Algorithms

Wireless streaming protocol
(Chapter VI)

P
ro

to
co

l e
vo

lu
tio

n

Multipath streaming protocol
(Chapter VII)

Figure 2: Dissertation organization.

dissertation, we develop analytical models that characterize TCP and TFRC throughput

for different traffic workloads, namely CBR, VBR and bulk traffic. These traffic types, are

representative of typical multimedia workloads. Our work is the first one that considers

the effect of these types of workloads in TCP and TFRC throughput models. We compare

the developed models with existing ones, and we demonstrate that the assumption of flows

with an infinite data backlog, may significantly affect the TCP throughput estimate in case

of CBR and VBR workloads. Subsequently, we analytically derive packet delivery bounds

for TCP under the aforementioned workloads, and we present experimental results that

highlight TCP’s performance. The analytical derivation of packet delivery bounds for TCP

and TFRC is crucial, since it unveils the ability of the protocol’s algorithms to deliver

a specific level of QoS for a given set of network conditions. Finally, with the help of

the developed models and experimental results, we identify certain cases where TFRC is

not able to support CBR and VBR workloads effectively. We demonstrate that with the

proposed model, these predictions can be more accurate, leading to a better understanding

of the protocol and workload interactions.

Rate-Distortion Optimized Unicast Video Streaming with TCP: In the next

3

chapter of this dissertation, we initially present an analytical study that characterizes the

performance of video streaming with the transmission control protocol (TCP). First, we

develop an analytical model of the expected video distortion at the decoder with respect to

the TCP parameters, channel state, and error concealment method at the receiver. Based

on this model, we propose an algorithm for RD optimized mode selection (RDOMS) for

video streaming with TCP. We conduct extensive experimental results and we demonstrate

that for real-time video streaming, we can observe PSNR improvement in the range of 2 db

over currently proposed TCP-based streaming mechanisms. Our next contribution is the

development of a joint model of the TCP protocol, and the playback buffer at the receiver.

This model is developed by utilizing parts of the model that we developed in chapter 3.

Based on this new model, we derive the optimal playback rate at the decoder. Subsequently,

based on the two models, we propose an algorithm, for RD optimized packet scheduling

with TCP. Our results show an additional improvement of nearly one db, when packet

scheduling is applied together with the RDOMS algorithm.

Modeling the Effect of Handoffs on Transport Protocol Performance: After

we have completed a joint performance model and protocol for wireline networks, in this

chapter we develop from scratch a comprehensive model that captures transport protocol

performance in mobile networks. More specifically, we are concerned the effects of mobility

on the performance of transport protocols. Therefore, we develop analytical models that

characterize the throughput, latency, and jitter of TCP and TFRC protocols as a function

of the handoff induced packet loss rate and the disruption time. The result of our analysis

is a modular performance evaluation model, that may be used for analyzing the effect of

various mobility management architectures and mobility scenarios for existing and emerging

transport protocols. We also introduce the concept of the ”recovery period”, which is defined

as the time required for the transport protocol to achieve the nominal throughput in a new

link, after a handoff. This parameter allows even more precise analysis of the effects of

handoffs on the steady state throughput of TCP and TFRC, and consequently to the media

application. Ultimately, the precise modeling of the effect of handoffs, will help on the

design of optimized multimedia streaming policies.

4

Video Streaming in Heterogeneous Mobile Wireless Networks: This chapter

of the dissertation brings together the wireline models and algorithms developed in chap-

ter 4, with the mobility performance model developed in the previous chapter. We formalize

the process of video streaming in heterogeneous wireless networks, by emphasizing on the

performance model of the transport protocol in use. Our comprehensive model led to the

development of a new protocol for end-to-end video streaming in a heterogeneous wireless

environment. In the second part of this chapter we propose a new proactive media handoff

protocol, which is combined with the previously developed streaming protocol so that it

can assure the best possible QoS for a media streaming session. The proposed protocol,

is implemented on top of SCTP, and employs several mechanisms that use end-to-end se-

mantics for signaling handoffs, transmitting control messages, and traffic redirection. With

this work we demonstrate that the use of analytical, closed-form performance models of

transport protocols, can be utilized by a practical video streaming protocol.

Multipath Transport Protocol Models for Wireless Video Streaming: In this

final chapter, we are concerned with the use of TCP for multipath video streaming. Our

objective is to demonstrate that the use of analytical performance models can be used for

driving the behavior of a multipath video streaming protocol, so that the delivered video

quality is improved. To achieve this objective, we initially develop a stochastic closed-form

latency model, that captures the behavior of TCP when multipath transport is considered.

Based on the previously developed models, we propose three algorithms for optimizing video

streaming. More specifically, we initially present an adaptive playback adaption algorithm

that operates only at the client without intervention of the sender. The second algorithm

controls multipath scheduling of video packets, and can operate on top of any multipath

transport protocol. Main task of this algorithm, is the estimation of expected latencies

of video packets, and the proper allocation to the outgoing paths, based on the playback

deadlines at the client. Finally, we introduce the idea of multipath retransmission, and a

new algorithm, that intelligently decides the allocation of video packet retransmissions to

the available paths.

5

CHAPTER II

BACKGROUND

In this chapter we introduce the basic technologies that are in the focus of this dissertation.

Initially we provide an overview of the main mobile/wireless network technologies today.

Next, we analyze the operation of TCP, and two recently IETF standardized transport

protocols, namely the stream control transmission protocol (SCTP) [101], and the TCP-

friendly rate control protocol (TFRC) [46]. We will describe their main characteristics, and

outline their behavior in wireless mobile network environments. After the description of the

transport protocols, we proceed with the analysis of the main components of multimedia

communication systems, and we highlight their interactions with transport protocols. More

specifically, we will describe two popular media delivery mechanisms, namely pre-recorded

and real-time video streaming. These are the two application classes, that we attempt to

jointly optimize in this dissertation, under the aforementioned transport protocols.

2.1 Mobile and Wireless Networks

An understanding of the existing and emerging mobile network technologies is crucial so

that the proper behavior of transport protocols can be designed. We will briefly describe

in this section, the main mobile and wireless network technologies that exist today. Details

concerning these networks, will be given in subsequent chapters of this dissertation.

The main difference between wired and wireless access networks, is that wired links pro-

vide one-to-one communication without interference, whereas wireless links use one-to-many

communication that suffer from noise, significant interference, and bandwidth limitations.

These problems are caused by the time-varying and frequency selective nature of the wire-

less channels. These channel fluctuations are the result of a combination of attenuation (free

space propagation), multipath fading and shadowing [86]. In this rather harsh environment,

several wireless access networks architectures have been defined [103]. Main feature of both

6

existing and emerging wireless radio access networks (RAN), is the increased set of differ-

ences in the specifications of the physical (PHY) and medium access control (MAC) layers.

This trend stems from the advantages that different PHY/MAC layers offer according to the

target application domain. It is technically impossible to capture the needs of several appli-

cation scenarios with a small set of RANs. Therefore it is a expected that these technologies

will coexist for the near future and will act complementary to each other. For example this

heterogeneity of RANs, is now believed to be essential for the next generation mobile net-

works (fourth generation (4G)) which will operate on Internet standardized technologies

combined with various access technologies such as WLAN/3G/MAN. This heterogeneous

network, will be able to provide speeds ranging from 100 Mb/s in cellular networks to 1

Gb/s in hot-spot networks [103]. In order to ensure connection ubiquity together with

high bandwidth and mobility, the network architecture must be heterogeneous rather than

homogeneous. 4G technologies include management of handovers (within the same RAN

technology, and across different RAN technologies) and, thus, involve alternation of network

quality of service (QoS) (e.g., bandwidth, delay).

In table 1 we can see the main characteristics at layers 1 and 2 of existing RANs. The first

cellular technologies devised for packet data services after the success of the 2G technology

were GPRS and EDGE that are also known as 2.5G. The newest 3G cellular technologies,

use CDMA for the air interface, since this solution provides better performance for voice

traffic. However, the 3GPP and 3GPP2 standardization organizations, have developed so-

lutions for supporting data traffic. For WCDMA (UMTS) the high speed downlink packet

access (HSDPA) [48, 59] technology has been developed, while for CDMA2000 a similar

solution is called 1xEV-DO [14]. In HSDPA the channel bandwidth allocation between

voice and data can be configured, and a single carrier mechanism that shares codes and

transmission power is also a possible configuration. For 1xEV-DO however, a channel must

be exclusively allocated to data traffic, but the use of smaller bandwidth channels over-

comes this limitation. Recently, the 1xEV-DV technology for CDMA2000, uses a dynamic

algorithm for allocating the channel between voice and data traffic [97].

For data oriented networks however, like WLANs, high bit-rates are usually achieved

7

by the use of the orthogonal frequency-division multiplexing (OFDM) technology as the air

interface. The most important high speed data-oriented WLAN standards like 802.11a/g

and Hiperlan [21, 103], o metropolitan arean networks like 802.16a [50] use this technol-

ogy. OFDM divides a single high bit-rate channel into several narrowband channels that

transmit in parallel. The rationale behind the use of multiple narrowband channels, is that

this solution minimizes the effects of multipath delay spread. So OFDM is inherently better

for high-peak-rate packet data. While an OFDM proposal was made for the 3G air inter-

face [48], its was rejected due to the large peak-to-average power ratio of the OFDM signal,

leading thus to increased power consumption by the mobile.

The precise technical details of all the access network technologies are beyond the scope

of this dissertation.

Table 1: Comparison of radio access networks.

Radio access PHY
(Kbps)

Channel
bandwidth

Modulation Channel cod-
ing

Error re-
covery

WCDMA 64-384 5 MHz QPSK/BPSK Conv./Turbo srARQ
CDMA2000 1.2-307 1/5 MHz QPSK/16QAM Conv./Turbo srARQ
GPRS 9-171 200 KHz GMSK Convolutional srARQ
EDGE 8.8-473.6 200 MHz GMSK/8PSK Convolutional hARQ
802.11 6-54 x103 20-22 MHz QPSK/BPSK Convolutional swARQ

The heterogeneity that these mobile networks introduce, and their affect on media de-

livery/transport protocols, will concern us in this dissertation. We will analyze both the

problems that introduce for the transport of media, but we will also exploit the possible

benefits that this heterogeneity introduces.

2.2 Internet Transport Protocols

We have already stressed the importance of transport protocols as part of a communications

stack. In this section, we will describe their behavior that will unveil their importance as part

of any communications stack, including media communications systems. The understanding

of the protocol behavior, will allow us to rethink new approaches for the design of end-to-end

media communications in wireless IP-based networks.

8

2.2.1 Transmission Control Protocol

Initial purpose of the transmission control protocol (TCP), was to provide reliable datagram

delivery over wireline connectionless packet-based networks. However, as the technology

evolved, the new mobile and wireless world has set new challenges that have to be met by

TCP. In this subsection we will outline TCP’s functionality, and we will briefly describe its

behavior in mobile environments.

TCP was initially defined in RFC 793 [84], and provides a connection-oriented and

reliable byte stream oriented transport service. The term connection-oriented means that

whenever applications want to transfer data, they establish a logical connection between

two endpoints. This explicit TCP connection is established by a three-way handshake

process [84]. When data is passed from an application to TCP for delivery, TCP splits the

data stream into smaller chunks, and adds a protocol information header to form a segment.

The largest chunk of data that TCP can include in each segment is limited by the maximum

segment size (MSS). During the initialization of a connection, each host advertises its MSS,

and TCP chooses the smallest value to avoid further fragmentation. These segments are

passed to IP, and in turn IP appends its own header information to form datagrams or

packets.

Another interesting feature of TCP, is the way its probing for network resources. TCP is

using a window-based congestion avoidance mechanism, that acts as a self-clocking regulator

based on feedback from the receiver. When the TCP receiver successfully receives a packet,

it sends an acknowledgment (ACK) back to the sender. Main task of the sender, is to keep

a current record of the number of unacknowledged packets that it has released into the

network, which is called the congestion window. In addition, the sender keeps an estimate

of the round-trip time (RTT). The TCP sender is increasing its window size as long as

packets are being acknowledged. The way the sender detects a packet loss is by either the

non-arrival of a packet ACK within a certain time (i.e. via timer expiry or time out), or

by the arrival of multiple ACKs with the same next expected packet number (typically 3

duplicate ACKs). We will distinguish these two modes of packet loss detection by using the

names ”TO” and ”TD” respectively. With TCP, a packet loss is interpreted by the sender

9

always as an indication of congestion, and this results into reduction of the window size,

thereby indirectly controlling the data rate. Every time TCP receives an ACK, it updates

its estimate of the RTT. We assume that the RTT estimate is constant. Hence, in normal

operation, the timer is set to this value each time a packet is transmitted. However, when

multiple TO events take place consecutively (i.e. without the reception of any ACKs in

between), TCP applies the exponential backoff algorithm, where, for the k-th consecutive

TO event (k is an integer > 0), the packet is retransmitted and the timer is set to the

minimum of the values 2k RTO and 64RTO.

The behavior of TCP in wireless mobile scenarios, has attracted considerable research,

which we will analyze in detail in subsequent chapters of this dissertation. In general

however, TCP performance in mobile/wireless networks suffers from a series of problems.

One of the main research results identify TCP’s inability to distinguish between wireless

and congestion induced packet losses [103]. Another problem is related to blackouts, due

to disconnections, that lead to exponential increase of the RTO [99, 10]. A mechanism for

partly resolving this problem is through explicit layer 2 notifications to TCP, so that it can

freeze the RTO [47, 75]. An import concern is also the long and fluctuating delays due

to local retransmissions in the wireless links [26, 28], or due to deep buffering in cellular

access networks [28]. This situation can result into the invocation of the congestion control

algorithm and substantial decrease in the throughput. Finally, performance is deteriorated

due fragmentation caused by the smaller packet sizes that usually characterize wireless

networks [103].

In this dissertation we will investigate the performance of TCP in wireless scenarios, not

however for the general case of data transport, but in the context of media applications. We

will explore the use of TCP for media delivery, and we will propose cross-layer enhancements

between TCP and the media streaming application.

2.2.2 TCP Friendly Rate Control

The significant interest around the widely used TCP, has generated a wealth of research that

has produced several models that capture its behavior [5, 80, 95]. Utilizing the analyses

10

by one of the closed form models, a new congestion-control protocol has emerged and

is called TCP-friendly rate control (TFRC) [46]. TFRC is not a full-fledged transport

protocol. However, it controls the transmission rate of non-TCP traffic and it sets it at a

rate similar to the rate that TCP would send data if the TCP flow were experiencing the

same mean round-trip time and packet loss probability. It has been shown that the TFRC

protocol achieves TCP-friendliness while it prevents unnecessary bandwidth fluctuations,

by estimation of the packet loss rate and consequently the allowed output rate. TFRC is

using a closed form equation for TCP throughput in order to regulate the sender’s output

rate as a function of the packet loss rate p [46]:

T =
s

RTT
√

2p
3 + RTO0(3

√
3p
8)p(1 + 32p2)

(1)

In this equation s is the packet size, RTT is the RTT estimate, and RTO0 is the value

of the retransmission timer. In addition TFRC follows a packet spacing algorithm at the

sender:

tinter =
s
√

RTTcur

T ∗M
(2)

where M is the average of the square roots of the RTTs calculated using an explicit window

moving average (EWMA), and RTTcur is the most recent RTT sample [46]. Equation 1 does

not represent the actual TFRC sending rate, but only an upper bound for it. The actual

output rate of TFRC may is calculated using a different algorithm which we will describe in

a later part of this dissertation. If no packet loss has yet been ”seen” by the sender, TFRC

emulates the slow start algorithm of TCP by doubling the transmission rate every RTT. In

addition, the TFRC algorithm, assures that the output rate is not doubled more than once

during an RTT, similar to TCP [99]. The average receive rate at the receiver, is also used

as part of the TFRC rate estimation algorithm.

Overall, TFRC is emerging as an important protocol for the delivery of real-time media

data in the Internet. However, its performance and the relative merits of its various design

approaches have not been properly addressed in the case of heterogeneous mobile networks.

11

In this dissertation we will investigate this behavior, by developing first a comprehensive

model, and subsequently analyze its capability to deliver real-time media data.

2.2.3 Stream Control Transmission Protocol

The final protocol that we will describe, is the stream control transmission protocol (SCTP)

and it was also developed by IETF. SCTP is reliable, connection-oriented transport proto-

col that was initially designed for SS7 signaling transport [101]. However, it soon become

obvious that it has general applicability as a transport protocol that can operate on top of

connectionless packet networks such as the Internet similar to TCP and UDP. The first inter-

esting characteristic of SCTP is the packet format, in which the payload is not transported

as a unified chunk of data as in TCP, but in the form of well defined and self-contained

messages that are called chunks. There are several types of chunks. A user message is

formed into data chunks which have their own set of flags and length. Several control

chunks exist and they can be inserted into the same SCTP packet with data chunks. The

rationale behind this protocol format, is that head-of-line blocking of unrelated user mes-

sages is avoided. Another advantage is that SCTP is able to decouple reliable delivery from

message ordering by introducing the idea of streams. A stream, is an abstraction that allows

applications to preserve in-order reliable delivery within a stream, but unordered delivery

across streams. In this way, head-of-line blocking is avoided at the receiver in case multiple

independent data streams are flowing in the same SCTP session. This is different form the

chunk-based mechanism, since these streams carry user data which are transported in data

chunks.

Connection establishment in SCTP is quite different from that of its counterpart TCP

and it requires four steps before it is completed. An INIT message is sent from the active

opener while the receiver replies with an INIT ACK which contains a message authentication

code [101]. Subsequently, the sender sends a COOKIE-ECHO chunk where it echoes back

to the passive opener, the cookie that received. When the passive opener receives this

cookie back it checks its validity, and then the host actually allocates the resources and the

association is established. This form of connection establishment prevents denial of service

12

attacks with spoofed IP addresses [101].

Another new feature that SCTP introduced, was that of explicit support for multi-

homed hosts. This means that a single SCTP session can use alternatively anyone of

the available IP addresses of a host without disrupting an ongoing session. This feature

is currently used by SCTP only as a backup mechanism that helps to recover from link

failures. SCTP can identify these failures because it maintains a state for each remote

IP address by sending heartbeat messages periodically. Despite all these differences from

TCP, the congestion control algorithm is a window-based AIMD as in TCP, primarily

for achieving TCP friendliness [101, 99, 52]. One minor difference is located in the fast

retransmit algorithm which needs now four duplicate acknowledgments before it retransmits

the presumably lost packet.

A recent extension to the SCTP protocol called partial reliability for SCTP (PR-

SCTP [100]), is of particular use for the applications we are concerned with. The authors

describe an extension to the SCTP that allows an endpoint to inform its peer that it should

move the cumulative ack point (CumTSNack) forward 1. In case both endpoints of the

SCTP association support this extension, it can be used by an implementation to pro-

vide partially reliable data transmission service to an upper layer protocol. The authors

present the protocol extensions which can be summed up in a new parameter for the initial

session setup messages (INIT and INIT ACK messages), and the definition of a new FOR-

WARD TSN message type, that provides explicit control over the receiver’s CumTSNack.

We envision SCTP as a successor to TCP for applications that have rather complicated

data transport requirements. We will use the multihoming feature of SCTP, as a flexible

protocol platform that allows more efficient implementation of the algorithms developed for

TCP and TFRC.

2.3 Multimedia Communication Systems

In this section we will describe the main components of media communications systems.

Understanding of media applications, is necessary so that the relative tradeoffs are properly

1Cumulative TSN Ack Point: Equivalent to TCP’s largest sequence number received.

13

identified when a cross-layer optimized system is designed (figure 3).

Error resilient tools

network adaptation

Source coder / decoder

End-to-end transport

Layer 1/2 transport

C
ro
s
s
-l
a
y
e
r
a
d
a
p
ta
ti
o
n

Bit-rate/error resiliency adaptation,

joint source channel optimization

Data partitioning, resync

markers, FMO or ASO in

H.264, redundant frames

Packet-level FEC, end-to-

end retransmission, unequal

error protection

Bit-level FEC, link layer

retransmission, transmission

power control

Figure 3: Cross layer design for multimedia communication systems [37].

A typical video communication system has five components (figure 4): First is the

source encoder that compresses video and audio signals into media packets. These packets

can be sent to lower system layers, or stored for transmission on demand. Second is the

application layer which is in charge of channel coding and the packetization functions.

Third is the transport layer that performs congestion control and delivers media packets

from the sender to the receiver, while it assures fair network resource utilization. Fourth is

the delivery of media packets to the client through the transport protocol. And the final

fifth component is the the decompression and display of the video units at the receiver.

The typical flow of events in a media session is described next: At the sender, the video

encoder generates video packets. The source bit rate is constrained by a rate controller which

makes the bitrate allocation either at the frame or packet level. The bit rate constraint is

usually set based on the estimation of the available channel bandwidth. The video units

are packetized into real-time transport protocol (RTP) packets, and they are delivered to

the operating system’s protocol stack (e.g. UDP/IP). The IP packets are fed into a FIFO

14

Video

encoder

Packe-

tizerInput
Transport &

IP layers

Channel

coder

Modula-

tor

Video

decoderError

Video

decoder

Depa-

cketizerOutput
Transport &

IP layers

Channel

decoder

Demodu-

lator

Wireless

channel

Figure 4: Components of a typical wireless video communication system.

output buffer before entering a packet lossy network, which can be the Internet, a wireless

network, or a heterogeneous network. The network may have multiple channels (e.g., a

wireless network) or paths (e.g., a network with path diversity), or support QoS (e.g.,

integrated services or differentiated services networks). Some packets may be dropped in

the network due to congestion, or at the receiver because of excessive delay or unrecoverable

bit error in a wireless network. To combat packet losses, parity check packets used for FEC

may be generated in the application/transport layer. In addition, lost packets may be

retransmitted if applicable. Packets that reach the receiver on time are buffered in the

decoder buffer. The transport layer and application layer are responsible for depacketizing

the received transport packets from the decoder buffer, channel decoding (if FEC is used),

and forwarding the intact and recovered video packets to the video decoder. The video

decoder then decompresses video packets and displays the resulting video frames in real-

time (i.e., the video is displayed continuously without interruption at the decoder). The

video decoder typically employs error detection and concealment techniques to mitigate the

effects of packet loss.

15

2.3.1 Video Coding

The operation of the video encoder is to take raw video data and compress them so that

temporal and spatial redundancy are reduced. Several successful standards have emerged

which are basically separated into two main families of video compression standards: the

H.26x family and the MPEG (Moving Picture Experts Group) family. Purpose of these

standards is to address a wide range of issues such as bit rate, complexity, picture quality,

and error resilience.

The H.26x family of standards, developed by the International Telecommunications

Union-Telecommunications Sector (ITU-T), and aims at telecommunication applications

and have developed from ISDN and T1/E1 service to embrace PSTN (Public Switched

Telephone Network), mobile wireless networks, and LAN/Internet network delivery. The

first standard of this family is H.261 (’90), which was designed for video communications

at rates of 64kbps where the main requirement was low coding delay [19]. The H.263

standard (’95) was originally designed for very low bit rate applications, but eventually

evolved into a significant improvement over H.261 at any bit rate [20]. As an extension of

H.263, H.263+ and H.263++ (’97) [21] provide 12 new negotiable modes and additional

features such as unrestricted motion vector mode, slice structure mode, scalability, etc.

These modes and features further improve compression performance and error resilience.

H.264, an on-going standard, aimed to achieve substantially higher video quality than the

existing video standards at all bit rates [22]. Recently this standard was merged with the

version 10 of MPEG-4 AVC (Advanced Video Coding).

The other important family of video coding standards is MPEG, developed by the MPEG

group of the International Standards Organization (ISO). The first MPEG-1 standard was

developed for CD-ROM applications with rates below 1.5 Mbps. MPEG-2 (’95) was de-

signed for DVD, HDTV (High Definition Television) and digital satellites applications with

rates between 2 and 20 Mbps. The next version was MPEG-4, which extends the basic

hybrid-based video coding to object-based video, and it aims at low bit rate applications as

well as interactive multimedia applications. The goal of MPEG-4 standard was to support

new functionalities, such as improved coding efficiency, error robustness, and content-based

16

access, manipulation, and scalability.

The newest standard is H.264/AVC which aims to provide clean new standard that

combines state-of-the-art compression technologies [45]. As we said, it is the result of the

merger between the MPEG-4 group and the ITU H.26L committee in 2001, known as JVT

(Joint Video Team), and is a logical extension to the previous standards adopted by the

two groups. Thus, it is also called H.264, AVC or MPEG-4 part 10. The standardization

of H.264/AVC is still ongoing. For an overview and comparison of the video standards, a

detailed analysis can be found in [104]. MPEG-7 and MPEG-21 standards target the multi-

media content description interface, which is different from traditional multimedia coding.

It is important to note that all the standards are decoder standards, i.e., they standardize

the syntax for the representation of the encoded bitstream and define the method for de-

coding process, but leave substantial flexibility in the design of the encoder. This limitation

on the scope of standardization allows the maximal latitude of optimization for specific

applications.

DCT Quantization Entropy

Encoder
M

U

X
Inverse

Quantization

+

Inverse

DCT

+

+

Motion

Compensation

Motion

Estimation

Frame

Memory

Video

Input

Figure 5: Block diagram of a typical hybrid-based video encoder.

Nevertheless, from the compression point of view, all the above mentioned video com-

pression standards share the same block diagram, as shown in figure 5. This type of video

17

codec is called the block-based hybrid motion-compensated approach, where each video

frame is presented in block-shaped units of associated luminance and chrominance samples

(16× 16 region) called macroblocks (MB). As shown in figure 5, the core of the encoder is

motion compensated prediction. The first step in the motion compensation process is mo-

tion estimation, which aims to find the region from the previous frame that best matches

each MB in the current frame. The offset between the MB and the prediction region is

known as a motion vector. The motion vectors form a motion field, which is entropy en-

coded. The second step is motion compensation, where the reference frame is produced

by applying the motion field to the previously reconstructed frame. The prediction error,

known as the displaced frame difference, is obtained by subtracting the reference frame from

the current frame. Following motion compensation, there are three major blocks to process,

namely, transform, quantization, and entropy coding. The key reason in using transform

is to decorrelate the data so that the associated energy in the transform domain is more

compact and thus the resulting transform coefficients are easier to encode. The discrete

cosine transform (DCT) is one of the most widely used transforms in image and video cod-

ing due to its high transform coding gain and low computational complexity. Quantization

introduces loss of information, and is the primary source of actual compression. Quan-

tized coefficients are entropy encoded, e.g. using Huffman or arithmetic coding. The input

video frames, are divided into 8 × 8 pixel blocks, and DCT is then applied to each block,

with resulting coefficients quantized. In these standards, a given MB can be intra-frame

coded, inter-frame coded using motion compensated prediction, or simply replicated from

the previously decoded frame. These prediction modes are denoted as intra, inter, and

skip mode, respectively. Quantization and coding are performed differently for each MB

according to its mode. Thus, the coding parameters for each MB are typically represented

by its prediction mode and quantization parameter.

2.3.2 Video Streaming

In general, there are two ways to deliver pre-recorded video over a packet-oriented wireless

network (and wired packet-switched network), and these are file download or streaming.

18

With file download, the entire video is downloaded to the users terminal before the playback

commences. The video file is downloaded with a conventional reliable transport protocol,

such as TCP. The advantage of file download is that it is relatively simple and ensures a

high video quality. This is because losses on the wireless links are remedied by the reliable

transport protocol and the playout does not commence until the video file is downloaded

completely and without errors. The drawback of file download is the large response time,

typically referred to as startup delay. The startup delay is the time from when the user

requests the video until playback commences. Especially for large video files and small

bandwidth wireless links, the start-up delay can be very large.

Pre-Recorded Video Streaming: With video streaming on the other hand, playback

commences before the entire file is downloaded to the users terminal. In video streaming

typically only a small part of the video ranging from a few video frames to several hundreds

or thousands of frames (corresponding to video playback durations on the order of hundreds

of milliseconds to several seconds or minutes) are downloaded before the streaming com-

mences. The remaining part of the video is transmitted to the user while the video playback

is in progress. One of the key tradeoffs in video streaming is between the start-up delay and

the video quality. That is, the smaller the amount of the video that is downloaded before

streaming commences, the more the continuous video playback relies on the timely delivery

of the remaining video over the unreliable wireless links. The errors on the wireless links

may compromise the quality of the delivered video in that only basic low quality (and low

bit rate) video frames are delivered or some video frames are skipped entirely. Thus, video

streaming gives the user shorter start-up delays at the expense of reduced video quality. The

challenge of video streaming lies in keeping the quality degradation to a level that is hardly

noticeable or tolerable while utilizing the wireless resources efficiently (i.e., supporting as

many simultaneous streams as possible). The streaming service operates more or less in the

same way as the video conferencing service. One of the differences are that the streaming

service can be considered as an asymmetrical service because most of the information flows

in one direction; from the server where the information is stored, to one or more clients.

The requests from the client can be e.g. a request of retransmission due to an error in

19

transmission.

Live Video Streaming: The service of video conferencing requires that the media

communication session is performed in real time. A video conferencing service is defined to

be an audio visual conversational conference service providing two-way real-time transfer

of voice and video between groups of users in two or more separate locations. Albeit the

audio and video data are the most fundamental parts of the service, other types of data,

such as still pictures, text or graphics may also be exchanged (ITU-T F.702, 1996). The 3G

mobile system makes it possible to setup video conferencing services at low bitrates. Video

conferencing is a service that contains continuous video and audio data should be delivered

to an end user with a total latency of less than 200ms. This requirement requires a new set of

mechanisms and algortihms that should be different from video streaming applications, and

they should also be tailored to the specifications of the wireless radio access network [103].

20

CHAPTER III

TRANSPORT PROTOCOL MODELS FOR CBR AND

VBR WORKLOADS

In this chapter we present analytical models that characterize TCP and TFRC throughput

for different traffic workloads, namely CBR, VBR and bulk traffic in a hybrid wireless/wired

network configuration. We compare the proposed model with existing TCP models, and we

demonstrate through simulations the advantages of the proposed model. Subsequently, we

analytically derive packet delivery bounds for TCP under the aforementioned workloads,

and we present experimental results that highlight TCP’s performance. Finally, with the

help of the developed models and experimental results, we identify certain cases where

TFRC is not able to support CBR and VBR workloads effectively.

3.1 Introduction

The transmission control protocol (TCP), has dominated the Internet traffic since its incep-

tion. Its widespread usage has spurred the development of several models that characterize

its performance in terms of throughput, delay, and fairness [6, 5, 80, 22, 95, 115, 90]. The

earlier TCP modeling efforts used continuous-time approaches [6], in order to obtain ana-

lytical formulas for the steady state throughput of a single flow. In subsequent work [80],

researchers have proposed a widely-used model for TCP, that utilizes discrete-time Markov

chains to characterize both the congestion window evolution and the achieved throughput.

Models of throughput and latency for various flavors of TCP, i.e., Tahoe, Reno, and SACK,

have been presented in a comprehensive work reported at [95]. A model that characterizes

TCP window evolution as a set of stochastic differential equations can be found in [74],

and other studies that model versions of TCP that do not enjoy wide deployment, i.e.,

TCP-Vegas, may be found at [91, 90]. Utilizing the analyses provided through these mod-

els, a new congestion-control protocol has emerged that is called TCP-friendly rate control

21

(TFRC) [46]. TFRC transmits non-TCP traffic at a rate similar to the rate that TCP would

send data if the TCP flow was experiencing the same mean round-trip time and packet loss

probability. This rate is predicted using the analytical models cited earlier [46]. It has been

shown that the TFRC protocol achieves TCP-friendliness while it prevents unnecessary

bandwidth fluctuations, by estimation of the packet loss rate and consequently the allowed

output rate.

A common theme of the various performance models is that they characterize the pro-

tocol behavior for either bulk data flow or for short-lived flows. Arguably, the current and

future Internet, is required to support various types of data, voice, and multimedia traffic

workloads that may require a generalization of the assumptions that the previous models

have been using. For example constant and variable bit-rate video (CBR & VBR) and VoIP,

represent typical multimedia workloads which continue to gain importance in this context.

Table 2 provides a summary of Internet workloads and their traffic characteristics. As

seen in this table, Web-based interactions are usually modeled as Pareto ON/OFF sources

that exhibit self-similar behavior [34, 11]. The behavior of VBR workloads is usually more

complex and several modeling approaches have been presented in the literature [51].

There have been, to our knowledge, relatively few models capture the coupling between

between transport protocol behavior under CBR and VBR workloads. Of specific interest in

our work, are models that consider the case of heterogeneous traffic workloads, transported

by a single end-to-end transport layer session. We propose and develop models for CBR

and VBR workloads when they operate on top of TCP and TFRC, and we characterize

the behavior of the TCP congestion window as a function of the workload. In this way

more accurate estimates of the throughput may be made. Subsequently, we follow the same

procedure in deriving the relationship between the actual rate, the allowed rate, and the

used workload for TFRC.

3.2 Network Model and Assumptions

Figure 6 depicts the network model used in this study. This model consists of a traffic

generator, that produces a workload according to a pre-defined model, and the TCP or

22

Table 2: Features of traffic characterization models.

Applications Quality requirements Traffic type
Voice over IP Low delay/low jitter/no loss CBR or VBR
Compressed video Small delay/small loss real-time VBR
Video streaming Small delay/small loss CBR
Real-time video streaming Small delay/small jitter/small loss VBR
WWW High throughput/small loss Self-similar
FTP No loss/low delay Self-similar

TFRC transport protocols, that absorb the load generated. We assume that one wired

channel that is connected in tandem with a wireless channel, so that a hybrid network is

created.

Workload and Network models: Concerning the traffic workload, we use a prob-

abilistic model that considers the sources as a renewal reward process [89]. According to

this model, at every round the workload generates an amount of packets that are absorbed

by the protocol. The wired network is modeled as a two state Markov chain, also known as

the Gilbert path model, that has been shown to predict the behavior the Internet packet

loss quite well [118]. The network can either be in good or bad state, that translates into

the successful delivery or loss of a specific packet. The wired packet loss probability is

symbolized as pw.

Sender

Receiver

CBR

VBR

Bulk

Wireline
network

buffer

Wireless
acceess
network

AP

Figure 6: System model for heterogeneous traffic workloads.

23

Wireless Loss Model: We model the wireless link as a packet-erasure channel that is

characterized by a bit error rate (BER). We assume a Rayleigh fading channel and so BER

is calculated as [103]:

BER =
1
2
(
1−

√
αEb

N0 + αEb

)
(3)

Therefore the packet loss probability can be written as:

pk = 1− (1− pe,k)Bk (4)

where pe,k is the BER after channel coding, and Bk is the packet size. In general, for

wireless channels the probability of packet loss depends on the source coding and channel

coding parameters, and of course the power level [103]. Now the probability of packet loss

in the hybrid wireless/wired configuration, will be:

ph = pw + (1− pw)pk (5)

Protocol model: A TCP connection between two endpoints is defined by ”rounds”,

similar to [62, 80], that have a duration of an RTT. During this round, TCP sends a burst

of packets equal to the allowed window, and waits for acknowledgments. We name the

number of RTT rounds that pass until there is a packet loss as an ”NL round” (figure 7).

Each rectangle in this figure, represents a packet that was sent during an RTT. Concerning

the packet losses, we assume that they are correlated in each round implying that if a

packet is lost, all the other packets in the same round are also lost [80]. Note that we make

here the additional assumption that the end-to-end RTT remains stable for significantly

large period. Otherwise the analysis would be complicated, and it would not lead to an

analytically tractable model.

3.3 TCP Throughput Model for CBR Workload

An underlying assumption in existing models of transport protocols like TCP, is the exis-

tence of an infinite data backlog at the sender [80, 22, 95]. While this assumption may be

valid for a majority of end-user current data-centric applications, it does not extend to con-

stant bit rate (CBR) traffic flows. Multimedia traffic like CBR encoded video or VoIP flows,

24

represent common traffic patterns that may alter the behavior of TCP if used together, and

motivate the analyses in this chapter. Consider now a CBR flow that is characterized by a

rate of µ packets per second. This traffic workload can be considered as a renewal reward

process, with a ”reward” of µRTT packets that happens at every cycle that has a duration

of an RTT. Figure 7 presents the packet-level behavior of this flow when TCP is used as the

underlying transport protocol. In the absence of packet loss, TCP will continue increasing

the size of congestion window for 1/b packets every RTT [99], where b is the number of

packets acknowledged with a single ACK message. However, the CBR flow may not need

to send as many packets as allowed by the congestion window, leaving unused packet slots

in each RTT round. Furthermore, this also implies that the congestion window will stop

increasing till the utilization of slots by packets reaches 100%.

Cong.

window

(packets)

time

packet lost

packet sent

acknowledgement (sack)

packet allowed but not sent

β

Xi round

γ

Ci round

Wi

Wi-1

first round

TO

Figure 7: Packet-level TCP behavior of a CBR flow at the sender.

Model without timeouts: From figure 7, we can see that an NL round consists of

Xib+1 RTT rounds. The average number of packets sent, given that the l-th packet is lost,

will depend on the packet loss probability p:

E[l] =
∞∑

k=0

P{l = k} =
∞∑

k=0

(1− ph)kp =
1
ph

(6)

25

Given that the l-th packet is lost, W − 1 more packets will be sent until the congestion

window does not allow any more to be sent. Therefore, the total packets sent will be:

SCBR = l + Wi − 1 ⇒

E[SCBR] = 1/ph + E[W]− 1 (7)

Assume now that Ci is the RTT round for which the CBR flow rate is equal to the available

TCP rate, and γi is the number of packets send in the final (Xi + 1)-th RTT round.

Consequently, from figure 7 we can write for the total number of packets send in an NL

round:

SCBR =
Ci/b−1∑

k=0

(
Wi−1

2
+ k)b + µRTT (Xi − Ci) + γ (8)

We now derive the distribution of the random variable C. This relies on the fact that

Ci represents the RTT round for which the output rate µ of the CBR flow, is equal to the

allowed TCP rate. Until that round, the window is increased for 1/b packets for each RTT

round:

Wi = Wi−1/2 + Ri/b− 1 ⇒

E[W] = 2(E[R]/b− 1) (9)

So for the Ci-th round for which the window stabilizes will be:

µRTT = Wi = Wi−1/2 + Ci/b− 1 ⇒

Ci = b(µRTT + 1−Wi−1/2) (10)

Finally when equations 8 and 10 are combined we get:

SCBR
i =

µRTT−Wi−1/2∑

k=0

(
Wi−1

2
+ k)b + γ

+ µRTT
(
Xi − b(µRTT + 1−Wi−1/2)

)
(11)

26

In order to find the total number of rounds Xi included in an NL round as a function of

W , we use equations 7, 9, and 11.

Timeout modeling: The next step towards the complete model, is the representation

of Time-Outs (TOs). However, the used of a CBR workload does not alter the behavior of

TCP either one TO happens or a series of them, when compared with any other workload.

Therefore we can reuse results already available at the literature for accommodating this

case. The average number of packets that will be sent when the sender suffers TOs will

be [80]: E[STO] = PTO
1

1−ph
.

Therefore, the final expression for the throughput may be obtained as follows:

TCBR =
E[SCBR] + PTO

1
1−ph

(E[XCBR] + 1)RTT + PTORTO0
1

1−ph

(12)

This formula, provides the TCP throughput as a function of the CBR rate µ, the packet loss

rate of the hybrid network ph, RTT, and acknowledgment ratio b. Note that if we assume

that γi = Wi/2 then it has to be µRTT > βi otherwise the CBR flow rate requirement

cannot be met after a decrease in the congestion window.

CBR plus Elastic Workload: Of interest is the case where an end-user application

(e.g., a video conference or net-based meeting with voice and file transfers), generates differ-

ent types of traffic workloads through the same end-to-end session [41]. The question that

may come up is how the TCP throughput would be affected. Consider for example, the case

that there is an additional bulk (or best effort) workload, that we would like to transport

through the same TCP with CBR session. If there is such a bulk data flow, also fed to

TCP, then the congestion window will increase after the CBR rate is satisfied in round Ci.

Indeed, the bulk workload will start its transmission from round Ci + 1. Therefore, the

total number of packets that will be sent by the bulk data flow in an NL round will be:

SBLK =
Xi∑

j=Ci+1

(j − Ci)b (13)

since for the first C rounds, the bulk data flow is idle because the bandwidth is assigned

to the CBR flow. A prioritization method could be employed here by the application,

effectively changing the ratio of the allocated bandwidth. So the throughput for TCP

27

would be:

T combo =
E[SBLK] + E[SCBR] + PTO

1
1−ph

(E[XCBR] + 1)RTT + PTORTO0
1

1−ph

(14)

3.4 TCP Throughput for VBR Workload

An alternative to CBR encoding for media traffic, is variable-bit-rate (VBR) encoding. With

VBR, the quality of the media in terms of distortion does not suffer from large fluctuations

contrary to the output rate which can exhibit significant variations. A number of research

works related to the modeling of network behavior with VBR video streams, have been

presented in the literature [17, 67, 70, 51, 61]. However, in this section we follow a novel

approach, and design a joint model of TCP and a VBR workload of a typical video encoder.

Assume initially a VBR source that writes data (as shown in figure 6) to an intermediate

buffer, from which then data can be consumed by TCP. We model this buffer in terms of

rounds that have a duration r, similarly to the previously defined notation. Two operations

can be executed to the buffer and these are to add and remove data. These operations take

place at the start of each round. Therefore, at the round j + 1, the amount of the buffer

contents will be given by:

Bj+1 = Bj + Aj − Sj (15)

where Sj represents the data removed from the buffer by TCP, and Aj the packets added by

the encoder. This equation indicates that the amount of data consumed by TCP at round

j + 1, depends on the current buffer occupancy Bj . This equation will eventually take the

recursive form:

Bj =
j∑

k=0

Ak −
j∑

k=1

Sj (16)

Now if Bj ≥ Wj , then TCP can remove from the buffer a number of packets equal to the

available window Wj , utilizing it thus 100%. On the other hand, if Bj < Wj , then TCP

will consume all the data that exists in the buffer, leading thus to a buffer underflow. This

means that the number of bytes sent in each round will be:

28

Sj =





Wj if Bj−1 > Wj

Bj−1 if Bj−1 ≤ Wj

(17)

Note that P{Buffer underflow}=P{Bj < Wj }. So from equations 15 and 17 we can write:

Sj+1 =





Wj+1 if Bj > Wj+1

Bj−1 + Aj−1 − Sj−1 if Bj ≤ Wj+1

(18)

This means that the congestion window for the j-th RTT round of NL round i will be:

Wi,j+1 =





Wi,j + 1/b if Bj ≥ Wj

Wi,j if Bj < Wj

(19)

Figure 8 presents graphically how the behavior of the congestion window is affected, when

a buffer underflow event happens. Now if we denote the number of RTT rounds for which

Bj ≥ Wj as F, and the number of rounds that Bj < Wj as G, then we have that (Gi+Fi)b =

Xi. Consequently, the value Wi at the end of the NL round, will be Wi = Wi−1/2 + bFi,

making thus E[W] = 2bFi. Since we do not know the value of the buffer size at the instant

that the window remained unchanged, we assume that for the number of rounds Gi, the

buffer will have an average value of Bavg. This assumption, makes the total number of

packets sent in an NL round equal to:

SV BR
i = SF

i + SG
i =

F∑

j=0

(Wi−1/2 + k)b +
G∑

j=0

Bavg
i (20)

By using equation 7 which provides the estimate of the packet losses regardless of the

workload, and equation 20, we obtain the duration X of an NL round with VBR workload.

The input of Aj bytes in a round r, depends of the VBR video traffic model used. We

assume a simple stochastic model presented at [61], that characterizes the behavior of a

video sequence that consists of I, P, and B frames [110]. In this model the distribution of

the P and B frame sizes is modeled as i.i.d. log-normally distributed random variables with

variance σ and mean µ for each of them. In addition, this model includes the size of an

I frame as a function of the scene complexity, which is described by two random variables

29

J and L where J remains constant during a scene, while L is described by a normally

distributed noise process. Given that the periods of I, P, and B frames are τI , τP , and τB

respectively, and the number of P and B frames that correspond to an I frame are Pnum

and Bnum, then the size in bytes that will be sent until time instant t is:

At =
t∑

l=0

[
(Jl + Kl)lτI +

Pnum∑

m=0

Pm
l (lτI + τP) +

Bnum∑

m=0

Bm
l (lτI + τB)

]
(21)

Now because the period of I, P, and B frames does not match the RTT period, we have to

find how many data are placed in the buffer during an RTT. This will be given by:

Aj ≡ At for which 1 < d tτx

jRTT
e ≤ 2 with x ∈ (I, P, B) (22)

The average buffer occupancy is given by the average number of bytes added by the VBR

workload minus the average number of packets sent by TCP. From equations 20 and 22, we

time

Packets

sent/RTT

cwnd is stable,

all the packets

were sent

cwnd halved

due to packet

loss

Timeout

i-th NL

j-th RTT

Figure 8: Congestion window evolution for TCP with a VBR flow.

can get the TCP throughput equation for the VBR workload:

30

E[SV BR] = bF
Wi−1

2
+ b

F (F + 1)
2

+ GAi ⇒

T V BR =
bFE[W]/2 + bF (F + 1)/2 + GE[A]

(Xb + 1)RTT
(23)

3.5 TFRC Throughput and Latency Model

In this section we proceed with the characterization of the TCP-friendly rate control protocol

(TFRC). We introduced TFRC is an equation-based rate control scheme, that is not a full-

fledged transport protocol. In this study we consider TFRC to be implemented on top of

UDP since UDP is protocol of choice for real-time media streaming applications. TFRC is

using a closed form equation for TCP throughput in order to regulate the sender’s output

rate as a function of the packet loss rate p [46]:

T =
s

RTT
√

2p
3 + RTO0(3

√
3p
8)p(1 + 32p2)

(24)

In this equation s is the packet size, RTT is the RTT estimate, and RTO0 is the value

of the retransmission timer. In addition TFRC follows a packet spacing algorithm at the

sender:

tinter =
s
√

RTTcur

T ∗M
(25)

where M is the average of the square roots of the RTTs calculated using an explicit window

moving average (EWMA), and RTTcur is the most recent RTT sample [46].

1: if p > 0 then
2: x calc = T (p, RTT, T 0)
3: tfrc x = max[min(x calc, 2 ∗X recv), s

tmbi]
4: else
5: if tnow − tld ≥ RTT then
6: tfrc x = max(min(2 ∗ tfrc x, 2 ∗X recv), s/RTT)
7: end if
8: tld = tnow
9: end if

Figure 9: The TFRC rate estimation algorithm.

31

Equation 1 that we presented in chapter 2 of this dissertation, does not represent the

actual TFRC sending rate but only an upper bound for it. The actual output rate of TFRC

is calculated using the algorithm in figure 9. In this algorithm, s represents the packet size,

tld is time when the rate was last doubled, and tmbi is the maximum back-off time (64

seconds by default). If p is zero, no packet loss has yet been ”seen” by the sender and in

this phase it emulates the slow start algorithm of TCP by doubling the transmission rate

every RTT. The condition, tnow − tld ≥ RTT , assures that the rate is not doubled more

than once during an RTT, similar to TCP [99]. Xrecv is the average receive rate at the

receiver. This value is calculated in appendix A (equation 121). For calculating the average

sender rate, we consider the case where TFRC is in congestion avoidance and thus p > 0.

If we combine equations 1 and 121, we obtain the total number of packets sent by TFRC

in a single NL round:

E[S] = max
(
2min(T,

2E[R]
RTT

),
s

tmbi

)
(26)

In the next subsection we will see how this equations can be utilized in order to model the

transport of more complex workloads.

If we assume a constant value for RTT, then the only parameter that could affect the

TFRC rate estimate is the packet loss rate p. If TFRC receives reports every δRTT seconds,

then in between these epochs, the output rate will be stable. The inter-packet spacing will

also be fixed during this periods. So the average number of packets lost, when m packets

are sent, will also be given by equation 6. The VBR traffic and buffer model developed

earlier for TCP, can also be used for TFRC since the buffer state is independent of the

protocol behavior. So in the j-th RTT round TFRC will send:

STFRC
j =





T TFRC
j RTT if Bj−1 > T TFRC

j

Bj−1 if Bj−1 ≤ T TFRC
j

(27)

As mentioned before, till the next time p is reported to the TFRC-based sender, the total

number of packets sent is given by:

32

Packets

sent/RTT

time

packet lost

packet sent

acknowledgement

packet allowed but not sent

New PLR

reported

Figure 10: Packet-level TFRC behavior of a CBR flow at the sender.

SV BR = SF + SG =
F∑

j=0

(T TFRC
j RTT) +

G∑

j=0

Bavg (28)

Modeling TFRC with a CBR flow is similar to the case of the TCP, as the number of

rounds F can be calculated as similar with before. Consequently we have for TFRC:

T V BR =
E[SV BR]
XRTT

⇒

T V BR =
F × T TFRCRTT + GE[A]

b(G + F)RTT
(29)

Note that in the case of TFRC X = δ, since each NL round is defined as the duration

between the time instants that the sender received feedback reports.

3.6 Numerical Results and Simulations

We used a server/client configuration with a bottleneck link between two routers and the

Reno version of TCP for our simulations. The results were obtained from 100 runs of the

ns-2 simulator [77], that simulated a duration of 500 seconds in the scenario. The bottleneck

link was varied from 1.5 to 5 Mbps, while the latency was set to 15ms, and buffer sizes were

33

set so that no packet loss takes place due to overflow. Packet losses were generated as we

discussed earlier.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

T
h

ro
u
g
h

p
u
t

(K
b

y
te

s
/s

e
c
)

RTT (sec)

Proposed model

Simulation results

(a) Goodput at the receiver versus the RTT

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

P
a
c
k
e
t

d
e
liv

e
ry

 p
ro

b
a

b
ili

ty

Packet delivery bound (packets)

Analytical derivation

Simulation results

(b) Packet delivery probability versus the bound at
the receiver

Figure 11: Simulations for TFRC receiver model validation. Parameters: p = 0.02, RTO0 =
1 sec, s = 1500 bytes.

3.6.1 TFRC with Elastic Traffic (Wireline)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.005 0.01 0.015 0.02 0.025 0.03Packet loss rate 0.5
 1

 1.5
 2

 2.5
 3

RTT (sec)

 0

 1

 2

 3

 4

 5

Latency (sec)

(a) Model predicted latency for the transfer of 1MB
with TFRC

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ra

n
s
fe

r
ti
m

e
 (

s
e

c
)

Data Transferred (Kbytes)

Proposed model

Simulation results

(b) Latency vs. data transferred with RTT = 1sec
and plr = 0.01

Figure 12: Analytical results and simulations for TFRC latency model validation. Para-
meters: RTT0 = 1 sec, s = 1500 bytes.

Results for the TFRC model are depicted in figure 11. The simulation results in this

figure represent the average percentage of packets delivered for 100 simulation runs. A first

important observation in figure 11(a), is that TFRC can meet the packet delivery bounds

34

easier than TCP due to its slower reaction to congestion events. Figure 11(b) also validates

this fact since we see that TFRC can have higher probability of successful packet delivery,

for a lower packet delivery bound. This means that tighter packet delivery bounds can

be met with higher probability from TFRC than from TCP. Further results for TFRC

are presented in figure 12. More specifically, figure 12(a) presents the average latency as a

function of RTT and the packet loss probability. It is interesting to note that TFRC latency,

is characterized by a linear increase as RTT and packet loss probability increase. However,

the increase of the end-to-end latency as a function of the number of transferred bytes

(figure 12(b)), does not follow a linear pattern. These results were obtained for fixed RTT

and packet loss probability values that are given in figure 12(b). In this figure we can see

that initially the results of the proposed model diverge from the simulation, but as the size

of the transferred data is increasing, the model approaches closer the real measurements.

This behavior is observed because our model does not include the slow-start behavior of

TCP, which has more dominant effect for smaller size transfers.

3.6.2 TCP and TFRC with CBR and VBR Traffic (Wireline)

For testing the VBR TCP model, we set the parameters of two popular video sequences

namely CONTAINER and COASTGUARD [94]. Figure 13(a) illustrates the cumulative

fraction of the throughput when the VBR flow was used as input to TCP. In the bottleneck

link we generated losses with average packet loss probability of p = 0.001. The VBR

parameters that were explained before, were set as follows: µJ = 5.9, σJ = 0.48, µB = 3.9,

σB = 0.27, µP = 4.8, σP = 0.64. The proposed model can predict the achieved throughput

fairly well since it can accommodate the rate fluctuations in the input. Results for the

TCP model presented at [80], are also shown in the same figure. Their approach provides

a slightly more optimistic throughput estimate since the occupancy of the buffer was set

to F=90%, resulting into a small number of rounds where the congestion window is not

increased. Results for TFRC are shown in figure 13(b). We can see that TFRC can achieve

more stable throughput since it only fluctuates between 1600 and 1800 Kbytes/sec. Also

the model can predict very close the actual throughput for the same buffer occupancy of

35

90%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Throughput (Kbytes/sec)

Proposed

Simulated

Analytical [Padhye00]

(a) TCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 1550 1600 1650 1700 1750 1800

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Throughput (Kbytes/sec)

Proposed

Simulated

(b) TFRC

Figure 13: Cumulative fraction of the end-to-end throughput for VBR workload with
buffer occupancy F = 90%. Parameters: RTO0 = 200 ms, W0 = 1 segment, Wmax = 6
MB, RTT0 = 1 sec, s = 1500 bytes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 350 400 450 500 550 600 650 700 750 800 850

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Throughput (Kbytes/sec)

Proposed

Simulated

Analytical [Padhye00]

(a) TCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 500 600 700 800 900

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Throughput (Kbytes/sec)

Proposed

Simulated

(b) TFRC

Figure 14: Cumulative fraction of the end-to-end throughput for VBR workload with
buffer occupancy F = 50%. Parameters: RTO0 = 200 ms, W0 = 1 segment, Wmax = 6
MB, RTT0 = 1 sec, s = 1500 bytes.

The behavior of both TCP and TFRC with lighter VBR workloads is quite interesting.

Figure 14 presents results for a VBR workload with an average buffer occupancy of 50%.

For TCP, this lighter load, leads to an over-estimation of the actual throughput when the

existing TCP models are used 14(a). However, the ability to communicate the precise input

load to the TCP model leads to a very good estimate for the proposed model, also depicted

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Jitter (ms)

Proposed

Simulated

(a) TFRC jitter with bulk traffic workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Jitter (ms)

Proposed

Simulated

(b) TFRC jitter with VBR workload and buffer occu-
pancy F=50%

Figure 15: Cumulative fraction of the end-to-end jitter for TFRC. Parameters: RTT0 = 1
sec, s = 1500 bytes.

in figure 14(a). The same results ar observed for TFRC in figure 14(b).

A very interesting experiment is presented next. We wanted to evaluate TFRC’s ability

to provide low jitter transport service. The expected behavior is to observe low end-to-end

jitter due to the smooth rate control algorithm that TFRC employs. Figure 15(a) validates

the expected TFRC behavior, when a bulk traffic workload is considered. However, the

interesting result is in figure 15(b), where jitter is shown for a VBR workload with an input

buffer occupancy of F = 50%. The actual jitter is different, and actually higher for the

same network conditions as before. The proposed model can predict this unexpected TFRC

behavior for a different workload. What it actually happens, is that the protocol commits a

smaller amount of data in the network when compared with a bulk workload. This situation

leaves part of nominal bandwidth unused, which is subsequently captured by the other TCP

cross traffic. This essentially means that even if TFRC uses smaller part of the bandwidth

it will have problem maintaining a stable output rate, and therefore end-to-end jitter.

3.6.3 TCP and TFRC with CBR and VBR Traffic (Wireless)

Evaluating the protocol’s performance under a hybrid wireless/wired network setup revealed

very interesting results concerning the TCP and TFRC’s ability to provide multimedia

support in these scenarios. We selected a fixed value for the wireless packet loss probability

37

for this set of experiments. The reason behind this decision, is because wireless networks

usually heavily employ local retransmissions that lead to a fairly low packet loss rate.

However, this mechanism usually lead leads to RTT fluctuations, that may affect the model

predictions.

 0 100 200 300 400 500 600

 0.002
 0.004

 0.006
 0.008

 0.01
 0.012

 0.014
 0.016

 0.018
 0.02

 0
 50

 100
 150
 200
 250
 300
 350

Throughput (Kbytes/sec)

CBR rate (Kbytes/sec)

 Wired PLB

Throughput (Kbytes/sec)

(a) Results for TCP

 0 100 200 300 400 500 600

 0.002
 0.004

 0.006
 0.008

 0.01
 0.012

 0.014
 0.016

 0.018
 0.02

 100
 200
 300
 400
 500
 600
 700
 800

Throughput (Kbytes/sec)

CBR rate (Kbytes/sec)

 Wired PLB

Throughput (Kbytes/sec)

(b) Results for TFRC

Figure 16: Throughput as a function of the CBR rate µ (x-axis) and wireless/wired packet
loss ratio (y-axis). pk = 0.001 and pw varies from 0.001 to 0.02.

The results for TCP in figure 16(a) indicate a rapid decrease in throughput as a function

of the wired packet loss probability. Also important is to note that the CBR load does not

heavily affect the achieved throughput. This behavior is something to be expected when

the packet loss probability is relatively high, and so it it dominates the protocol behavior.

However, for the case of TFRC, we see in figure 16(b) that the throughput is reduced sharper

as the workload rate is reduced, regardless of the packet loss probability. This sensitivity

of TFRC has its root in the slow-responsive nature of the protocol. When TFRC does not

commit data to the network, and it still suffers losses, it reduces the rate even lower that

the nominal bandwidth, resulting into severe throughput degradation.

Results for VBR workload are shown in figure 17. For clarity purposes we only show

the data points obtained from simulations. What we hope to see here again, is the effect

of asymmetric packet losses on the throughput of typical VBR multimedia workload. The

results for TCP in figure 17(a) indicate that a VBR workload that provides data to TCP

38

 0 10 20 30 40 50 60

 0.002
 0.004

 0.006
 0.008

 0.01
 0.012

 0.014
 0.016

 0.018
 0.02

 0

 50

 100

 150

 200

 250

 300

Throughput (Kbytes/sec)

VBR load F (%)

 Wired PLB

Throughput (Kbytes/sec)

(a) Results for TCP

 0 20 40 60 80 100

 0.002
 0.004

 0.006
 0.008

 0.01
 0.012

 0.014
 0.016

 0.018
 0.02

 180
 200
 220
 240
 260
 280
 300
 320
 340

Throughput (Kbytes/sec)

VBR load F (%)

 Wired PLB

Throughput (Kbytes/sec)

(b) Results for TFRC

Figure 17: Throughput as a function of the VBR load F.

between 20-50% of the allowed rate, it can achieve fairly stable throughput that moderately

depends on the packet loss rate. However, as the VBR load is increased, this behavior

changes since the workload behaves closer to an elastic workload with bulk data traffic. This

event contributes to the increase of the effect that cross traffic has on the TCP throughput.

Results for TFRC indicate a similar behavior with the case of the CBR workload. This

means that the unpredictable arrivals of the incoming workload packets at the protocol

sender, do not affect TFRC behavior as much as just the reduced workload. So for either

CBR or VBR workloads with nearly 50% load of the available bandwidth, TFRC receives

even lower part of the bandwidth and it cannot maintain a constant rate.

3.7 Conclusions

In this chapter we presented analytical models that characterize TCP and TFRC through-

put for different traffic workloads, namely CBR, VBR and bulk traffic in a wireless/wired

network setup. The first important conclusion that we draw from the analysis in this chap-

ter, is that the assumption of flows with an infinite data backlog, may significantly affect the

TCP throughput estimate in case of CBR and VBR workloads. We demonstrated that with

our model, these predictions can be more accurate, leading to a better understanding of the

protocol and workload interactions. Therefore, when performance is evaluated, someone

should try to correlate carefully the transport protocol in use, with the actual workload.

39

We identified TFRC’s inability to provide high throughput service when the traffic work-

load is characterized by large rate variations (e.g. VBR). This means that a number of

additional factors have to be considered before deploying the protocol for a media applica-

tion. For wireless scenarios, the proposed model does not differentiate significantly. Even,

the asymmetry in the packet loss probability across the wireline wireless networks does not

significantly the throughput since both TCP and TFRC experience the aggregate packet

loss.

40

CHAPTER IV

RATE-DISTORTION OPTIMIZED UNICAST VIDEO

STREAMING WITH TCP

In this chapter we present an analytical study that characterizes the performance of video

streaming with the transmission control protocol (TCP). First, we develop an analytical

model of the expected video distortion at the decoder with respect to the TCP parameters,

channel state, and error concealment method at the receiver. Based on this model, we

propose an algorithm for rate distortion optimized mode selection (RDOMS) for video

streaming with TCP. Experimental results for real-time video streaming depict improvement

in PSNR in the range of 2 db over currently proposed TCP-based streaming mechanisms.

Our next contribution is the development of a joint model of the TCP protocol, and the

playback buffer at the receiver. Based on this model, we derive the optimal playback rate

at the decoder. Subsequently, based on the previously developed models, we propose an

algorithm, for rate distortion optimized packet scheduling with TCP. Our results show an

additional improvement of nearly one db, when packet scheduling is applied together with

the RDOMS algorithm.

4.1 Introduction

Video streaming represents a very popular application for IP networks and especially the

Internet. However, the TCP protocol that dominates Internet traffic [38], is considered

unsuitable for video streaming applications. The main reasons are the rapid throughput

fluctuations and the reliability mechanism which incurs additional delays [110]. Therefore,

it is generally believed that the transport protocol of choice for video streaming should be

UDP, on top of which several application specific mechanisms can be built [110]. However,

the absence of congestion control from UDP can cause performance deterioration for TCP-

based applications if wide-scale deployment takes place in the Internet [104, 52]. This is the

41

reason behind IETF’s effort to design a new rate control protocol that realizes congestion

control compatible with TCP while it allows smoother throughput fluctuations [46].

Despite these efforts however, the majority of commercial IP-based video streaming sys-

tems usually employ TCP for transport layer services [87, 111, 85]. The widespread use

of TCP, has stimulated research for the development of mechanisms that facilitate video

streaming with TCP. In [60], the authors evaluate multimedia streaming using TCP, by

noting that buffering at the client can handle the retransmission delays and the congestion

control induced throughput variations of TCP. Another approach reported in [72], attempts

to provide a nearly CBR channel to the streaming flow that is using TCP, through prioriti-

zation over other flows at the receiver. The limitation with this approach is that it assumes

that congestion induced bandwidth fluctuations are due to the ”last mile” connection which

is rarely the case [38]. Other mechanisms like time-lined TCP [76], propose the realization

of streaming over TCP by allowing the operating system to control the transmission of data

that have strict deadlines. A similar approach to the previous one, can be found in [68],

where the proposed protocol TCP-RTM requires significant modifications both to the TCP

sender and receiver. A receiver-driven technique for video streaming with TCP, introduced

the idea of receiver-based delay control [49], in which receivers delay TCP acknowledgments

based on feedback from routers. Nevertheless, the need for infrastructure modifications ren-

ders this mechanism impractical for end-to-end video streaming applications. In another

insteresting recent approach, the authors introduced a new client-driven RTO estimation

algorithm which has as objective of identifying lost packets as quickly as possible [12]. Sub-

sequently, the authors combine their algorithm with a simple retransmission-based error-

control method in order to analyze the impact of the RTO estimation for video streaming.

In summary, one common deficiency of the above mechanisms is that they consider

modifications and enhancements to TCP or the infrastructure, and ignore the nature of the

content which is a video stream. While the previously mentioned optimizations may be

the only option for pre-recorded video streaming, in the case of real-time video streaming,

where the video encoder can accept feedback during the encoding process, a number of

techniques can be applied in order to improve the quality of the delivered video. To exploit

42

this potential, the video coding community has developed several mechanisms for network

adaptive video streaming. More specifically there are several methods that attempt to

achieve network friendliness through adaptation at the video encoder [113]. For example

an interesting approach is rate-distortion optimization (RDO) [69]. The advantage of this

approach is that it can accommodate rate fluctuations with appropriate modification of

the quantization parameter at the encoder. However, large variations in the received video

quality and significant processing overhead are two of its disadvantages. Other approaches

use RD metrics in order to select the optimal encoding mode at the sender [112]. Further

improvements led to RD algorithms that attempt to meet multiple packet deadlines by using

back-channel messages [53]. A complete and general framework for the RD optimized packet

scheduling has been presented at [33, 32]. The authors developed a general framework for

estimating the end-to-end distortion of video for various streaming scenarios. They propose

a heuristic algorithm for finding a suboptimal scheduling policy that optimizes the receiver

distortion. Several more sophisticated algorithms have been developed since [117, 65, 106, 7,

25]. For example in [117], a new scheme for RD optimized streaming for MPEG-4 layered

video that considers the use of unequal error protection through FEC. Other works for

RD optimized streaming include [73, 116], in which the authors proposed new heuristic

algorithms for calculating the expected distortion in real-time.

4.2 System Overview

In figure 18 we show a simplified block diagram of the proposed video streaming system.

Similar to the most widely used media streaming applications [111, 85], the proposed end-

to-end media streaming system based on TCP, is using a small startup delay ∆ before the

video playback starts, while the server sends video packets which are stored at the client

playback buffer. While video palyback starts, the server continues to send new data to the

end of the client playback buffer, while the decoder keeps consuming the data available at

the start of the buffer.

During the video streaming session, the playback delay fluctuates as a function of varying

network conditions, such as the available bandwidth, and the end-to-end transmission delay.

43

Internet

Encoder

buffer

Encoder

Decoder

buffer
TCP

sender

TCP

receiver

Playback

buffer

Decoder
Parameter

estimator

Parameter

estimator

Figure 18: Proposed real-time media streaming architecture based on TCP.

The use of an adaptive playback buffer is used at the receiver in order to accommodate

network jitter. The problem that is formed, is finding the minimum possible buffer size at

the receiver so that network jitter is smoothed. On the other hand, the video encoder is

using the distortion characteristics of the streamed video in order to maximize the video

quality at the receiver. The video streaming application evaluates the end-to-end distortion

of the video, as a function of the distortion of the individual macroblocks, the expected

end-to-end latency, the error concealment at the decoder, and the state of the transmission

path. This results in better scheduling policies that maximize the expected quality at the

receiver.

Our study jointly optimizes the previous parameters, and it also adds another degree

of flexibility at the encoder by considering the effect of the specific algorithms a transport

protocol is using. Another important feature of our approach, is that it requires no mod-

ifications to the protocol stack, and especially TCP, making it thus a practical approach

to for video streaming. Our belief is that the area of video coding and transport proto-

cols should be brought together by more careful joint study of the video coding algorithms

44

and the transport protocols. This work represents a step toward this direction with the

consideration of the TCP protocol.

4.3 Path Model and Packet Loss Estimation

The network model adopted, captures the behavior of an end-to-end path, as a three-state

Markov chain. Generally, the two-state Markov chain has been shown to predict fairly well

the behavior of the Internet with respect to packet loss behavior [8]. However, a higher

order Markov chain is selected, since we want to define three channel states that determine

the fate of a packet, namely received (R), lost (L), and delayed due to TO or TD (D). This

distinction is made because we want to separate the channel induced packet loss, and the

delayed packets which are delayed due to TCP retransmissions. According to the expected

delay of a specific TCP packet, the contribution of the video packet that this packet is

carrying to the expected distortion changes. This intuitive idea is the one that guided

the development of this comprehensive protocol/distortion model. Therefore, for this path

model, the transition matrix between the three states is given by:

A =




πRR πRL πRD

πLR πLL πLD

πDR πDL πDD




(30)

The notation πxy, symbolizes the transition from state x to y. Now if we want to capture

the probability to transition from one state to another after n successfully delivered packets,

we can re-write the previous matrix as:

An =




πn
RR πn

RL πn
RD

πn
LR πn

LL πn
LD

πn
DR πn

DL πn
DD




(31)

The probability for a packet to be delayed after n packets were sent, and were either received

lost or delayed, is equal to:

PD =
πRD + πLD + πDD

πRD + πDR + πLD + πDL + πDD
(32)

45

The transition probabilities are calculated using maximum likelihood estimators [18]: π̂RD =

nRD
nR

, where nRD is the number of times in the ACK messages that D follows R and nDR is

the number of times R follows D. On the other hand nR, is the number of received packets

(R), regardless of the previous state. Concerning the calculation of nRL, nLR, nLD, nDL,

we follow the same procedure. Note that for the receiver, it is relatively easy to identify and

classify a packet into one of the three aforementioned states, since it knows if the packet

was delayed or not.

Concerning the incurred latency for the delivery of a TCP packet, it can be estimated

after we delve into the inner mechanisms of TCP. By doing so, we can identify the following

three cases: The packet was received correctly the first time it was sent, the packet was

received from a retransmission that was triggered by three duplicate (TD) acknowledgments,

or the packet was received from a retransmission after an RTO expiration at the sender

(TO). We will calculate the probability that a packet that was sent at time ts, has delayed

for time L in the network, and this resulted into the missed deadline td. In the previous

three cases, the above statement can be expressed as P{L+ ts > td} = 1−P{L+ ts ≤ td} =

1 − FL(td), where FL(t) is the cumulative distribution function of the end-to-end latency.

Therefore, we have to calculate the latency distribution for the above three cases.

When the only source of latency is the network, no TCP mechanism has to be modeled,

since a packet is suffering only the network induced delay. Therefore, we model the distri-

bution of the the one way network induced latency fLN
, as a shifted Gamma distribution

with probability density function [25, 64]:

fLN
(t) =





λe−λt(λt)ν−1

(ν−1)! if t ≥ 0

0 if t < 0
(33)

with mean ν/λ, and variance ν/λ2.

In the second case where the TCP sender receives three duplicate acknowledgments, due

to a lost packet, it fast retransmits the packet that the duplicate ACKs indicate as missing.

The latency incurred due to a fast retransmission will be equal to the probability that a

TD event takes place (1 − PTO), where PTO is the RTO expiration probability, times the

RTT of the connection (duplicate ACK notification plus retransmission). This latency will

46

be given by: LTD = (1 − PTO)RTT . The latency for a retransmitted packet that comes

from an RTO expiration will be equal to LTO = PTOZTO where ZTO is the duration of the

timeouts. So the value P{LN + LTD + ts > td}
⋃

P{LN + LTO + ts > td}, will give the

probability that a packet has missed the playback deadline due to a fast retransmission or

a timeout at the TCP sender. Therefore, the total probability for the packet to be late is:

P TCP
D = P{LN + ts > td}

⋃
P{LN + LTO + ts > td|lost and caused TO}

⋃
P{LN + LTD + ts > td|lost and caused TD} (34)

This equation, captures the fundamental mechanisms that can be a source of delay for a

TCP based session. We will revisit this equation in section 4.5, were we will see how we

can use a version of it in order to drive on-the-fly decisions concerning the video streaming

process. In the next section, we move one step further, and see how the knowledge of the

expected latency for classes of packets, can be used in a distortion model.

4.4 Analytical Model of the Expected Video Decoder Dis-
tortion

In this section we derive an analytical model concerning the expected distortion at the de-

coder as a function of the channel state, TCP introduced latency, and the error concealment

method used at the decoder.

Let Mn
i be the coded MB at location i of frame n, and let also Mn

i ∈ Xk symbolize

the fact that a coded macroblock is contained in network packet Xk. Let also f denote the

pixel value at the encoder, and f̃ the reconstructed value at the receiver, and f̂ the encoder

estimation of the reconstructed pixel value at the decoder. Figure 19 depicts clearly this

arrangement. If we denote as ηn
i as the last packet used to packetize the MB Mn

i and as

K the number of packets that packetize the first I frame of the series (i.e. Ψ), then the

probabilities for MB i that belongs to frame n to be lost π̃
(i,n)
L , received π̃

(i,n)
R , and delayed

π̃
(i,n)
D are given as follows, if we assume that the first intra frame is always received:

47

fij

Network packet Xk

TCP/IP header RTP header codec headers encoded MB data

MBi
nFn

pixel

macroblock

frame

Figure 19: Packetization of encoded macroblocks

π̃R =





1 if n = 0

π
ηn

i −K−1
RR if n > 0

(35)

π̃L =





0 if n = 0

π
ηn

i −K−1
RL if n > 0

(36)

π̃D =





0 if n = 0

π
ηn

i −K−1
RD if n > 0

(37)

The above equations mean that the probability π̃
(i,n)
R to receive MB i from frame n correctly,

equals to the probability of receiving successively ηn
i −K − 1 packets correctly. For the

calculation of π̃
(i,n)
L , we have to consider the case of loosing the last of the ηn

i −K − 1

packets, given that the MB ηn
i −K − 2 has been successfully delivered. In addition for π̃RL

and π̃LL, we have:

π̃RL =





0 if n = 0

π
(ηn

i−1−K+1)

RR π
(ηn

i −ηn
i−1)

RL if n > 0
(38)

48

π̃RD =





0 if n = 0

π
(ηn

i−1−K+1)

RR π
(ηn

i −ηn
i−1)

RD if n > 0
(39)

π̃LL =





0 if n = 0

π
(ηn

i−1−K+1)

RL π
(ηn

i −ηn
i−1)

LL if n > 0
(40)

π̃LD =





0 if n = 0

π
(ηn

i−1−K+1)

RL π
(ηn

i −ηn
i−1)

LD if n > 0
(41)

The above equations can be interpreted as follows: The probability to loose MB ηn
i , precisely

after a successful MB delivery (πRL), is given as the probability of receiving the previous MB

(i−1) correctly with probability π
(ηn

i−1−K+1)

RR , times the probability to have another chain of

RRRRL... events which depends on the id of the packets used for MB i and i−1, and their

relative distance (ηn
i − ηn

i−1) in the network packet. So this means that the probability for

a MB to be delayed, that was calculated in equation 32, if we account for the packetization

that we analyzed in this section, will be:

PD =
π̃RD + π̃LD + π̃DD

π̃RD + π̃DR + π̃LD + π̃DL + π̃DD
(42)

After calculating the packet loss rates according to the packetization mechanism used, we

can now express the mean absolute difference (MAD) for frame N , for either Intra (I) or

Inter (R) coded MBs as:

MAD(MN
s) =

∑256
j=1 |fN

sj − E[f̂N
sj]|

256
(43)

The next step is the calculation of the expected value of a reconstructed pixel at the

receiver E[f̂n
sj]. This value, will be equal to the reconstructed value at the encoder times

the probability to receive the MB correctly π̃
(i,n)
R f̃n

ij , plus the probability to loose this MB

and so use the reconstructed value of the same pixel of the previous frame E[f̂n−1
ij] (error

concealment is used). In the second case, if there is an MB before it, the decoder can use

different EC method. This event requires the addition of the probability that this MB is

lost and the previous MB (fn−1
ml) was received correctly which will be the value of this pixel

49

in the previous frame (E[f̂n−1
ml]). Finally, we have to add the probability that both the

previous and the current MB are lost and another pixel from the previous frame (E[f̂n−1
ij])

is used. The value ẽn
ij in the following equations, denotes the IDCT residue that is added

to the reconstructed pixel values. For intra encoded frames we have:

E[f̂n
ij] =





π̃
(i,n)
R f̃n

ij + (π̃(i,n)
L + π̃

(i,n)
D)E[f̂n−1

ij] if Mij is first MB

π̃
(i,n)
R f̃n

ij + (π̂(i,n)
RL + π̂

(i,n)
RD)E[f̂n−1

ml]

+(π̃(i,n)
LL + π̃

(i,n)
LD + π̃

(i,n)
DL + π̃

(i,n)
DD)E[f̂n−1

ij] otherwise

(44)

For inter frames we obtain similarly:

E[f̂n
ij] =





π̃
(i,n)
R (ẽn

ij + E[f̂n−1
uv])

+(π̃(i,n)
L + π̃

(i,n)
D)E[f̂n−1

ij] if Mij is first MB

π̃
(i,n)
R (ẽn

ij + E[f̂n−1
uv]) + (π̃(i,n)

RL + π̃
(i,n)
RD)E[f̂n−1

ml]

+(π̃(i,n)
LL + π̃

(i,n)
LD + π̃

(i,n)
DL + π̃

(i,n)
DD)E[f̂n−1

ij] otherwise

(45)

4.4.1 Rate Distortion Optimized Mode Selection (RDOMS)

The next question that logically comes up is how can the previously developed models

can be utilized for end-to-end video streaming in such a manner that parameters like the

expected distortion is minimized. The answer to this question requires an online solution

to a multi-variable optimization problem. However, the closed form equations that we

developed assure that an implementation of them can be realistic and provide real benefits

when selecting the encoding mode of each specific macroblock.

Given that we have an estimate of MAD, i.e. the distortion at the decoder, by taking

into account all the necessary parameters like the packetizer, network channel status, TCP

introduced latency, and error concealment method, the encoder can apply RD optimized

mode selection for each macroblock. Consider a group of Φ macroblocks that belong to

frame n, with Φn
g = (Φn

g ,,Φn
g+NG−1) and NG the number of MBs in unit Φ. Assuming

that there is a number of macroblock groups that belong to F frames, the objective is to:

min(E[D(fF ,Φn
g)]) such that R(fF , Φn

g) ≤ Rc (46)

50

with the expected distortion for macroblock Φn
g ∈ fn:

MAD(fn,Φn
g) =

∑256
j=1 |fn

sj − E[f̂n
sj]|

256
(47)

The Lagrangian optimization problem is therefore defined as:

min
F∑

j=1

NG∑

i=1

Jk =
F∑

j=1

NG∑

i=1

E[D(f j , Φn
g+i, type)] + ξ

NG∑

i=0

R (48)

where type is inter or intra type of macroblock. The selection of the optimal Lagrange

multiplier ξ, can be selected using several alternatives. In order simplify the algorithm we

selected as as in [112], in order to simplify comparison. So for frame n this parameter is set

as:

ξn =
2Bn + (β −Bn)
Bn + (β −Bn)

ξn−1 (49)

where Bn is the buffer occupancy after the encoded frame n, has been added to the buffer.

4.4.2 Experiments

The network testbed presented in figure 20, was used throughout our experiments in this

chapter. Both the sender and the receiver were linux boxes while the middlebox was a

freeBSD machine that acted as a router. The Dummynet software [36] was used in the

middlebox in order to emulate various link configurations in terms of packet loss rate,

bandwidth and delay. The QCIF FOREMAN and AKIYO sequences [94], were used for real-

time encoding with the H.263 encoder at various bitrates for the streaming experiments [44].

The video packets were packetized into RTP packets and then sent to TCP. Due to the short

duration of the sequences (150 frames), they were repeated and fed as input to the encoder.

The capacity of the bottleneck link between the two routers is set to 250Kbps. The results

were obtained by running the same scenario 100 times and averaging the PSNR values of

the same experiments.

Figure 21 presents PSNR as a function of the channel packet loss probability for a target

real-time encoding rate of 256Kbps and 64Kbps respectively. We compare our approach

with results reproduced from [112], where the authors proposed an RD optimal mode selec-

tion (RDOMS) algorithm for streaming with UDP. We also evaluate the approach reported

51

freeBSD

routerSender

Packetize<MTU TCP info from

/proc filesystem

H.263 encoder

send()
recv()

H.263 decoder

Figure 20: Experimental setup for real-time video streaming.

at [72], that also considers streaming with TCP. We see that when the target bitrate was

256Kbps, the RDOMS/UDP approach outperforms both the other two. However, the ben-

efit of the proposed RDOMS algorithm, comes into play when TCP is used for transport.

It clearly outperforms by 2-2.5 db, a purely TCP based streaming approach, which lacks an

”understanding” of the network. Most important, for higher packet loss rate, the perfor-

mance in terms of PSNR is increasing. When the target bitrate was set to 64Kbps, PSNR

presents the same trend, but this time the effect is not so severe, due to the lower bitrate

injected into the network.

4.5 Playback Buffering and Transport Protocol Performance
Models

Having modeled the expected decoder distortion, we now proceed to derive a model that

couples the behavior of the TCP transport protocol with the playback buffer at the receiver.

Playback buffering at the receiver is usually employed in order to accommodate network

52

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
S

N
R

 (
d
B

)

Channel packet loss probability

256Kbps, UDP plus RDOMS from [Wu00]

256Kbps, proposed TCP plus RDOMS

256Kbps, TCP BWSS from [Mehra03]

64Kbps, UDP plus RDOMS from [Wu00]

64Kbps, proposed TCP plus RDOMS

64Kbps, TCP BWSS from [Mehra03]

Figure 21: PSNR as a function of the end-to-end packet loss probability for video streaming
with TCP.

delay fluctuations (i.e. jitter). Apart from network induced delay fluctuations, transport

protocols also affect jitter since they control packet retransmissions. Therefore, a proper

model of the network and the transport protocol has to be used in order to accurately

quantify the effects of jitter. The lack of proper modeling is attributed mainly to the use

of UDP as the transport protocol. However, in order to correlate the behavior of specific

time

Sender curve
S(t)

Total
bytes

Receiver
curve R(t)

Playback
curve P(t)

Initial delay

Initial buffer
size

Average
buffer
occupancy

Figure 22: Sender, receiver, and playback buffer curves.

transport protocol at the receiver with the playback buffer and the expected distortion, we

53

have to derive a model for the protocol. Because this problem is orthogonal to the global

model we want to derive, we provide the model that characterizes TCP goodput at the

receiver in the appendix A. Therefore, with the receiver model, we will be able to derive

a better approximate of the receiver function R(t). As a next step we would like to define

the optimal playback curve P (t) (figure 22). Concerning TCP’s goodput we have that:

E[G] =
E[R] + PTOE[RTO]

(E[X] + 1)RTT + E[ZTO]PTO
(50)

and we also showed in the appendix, that the goodput variance is:

E[V] =

8
pb + (2+b

3b +

√
8(1−p)

3bp +
(

2+b
3b

)2
)(1/2− 4/p) + 1/p2

(E[X] + 1)RTT
(51)

As a next step we would like to derive bounds concerning the expected number of received

bytes. By using Chebychev’s inequality [89] we have:

P (|R− µ| ≥ ε) ≤ V ar(R)
ε

(52)

This equation means that the probability that the number of packets received is between

these two bounds will be higher than 1 − V (R)
ε . We use the notation lb(t) and ub(t) to

signify the lower and upper probability bounds respectively .

Based on the derived probability bounds, there are two parameters that have to be

calculated for the playback buffer, and these are the minimum initial playback delay ∆,

and minimum playback buffer size B. Given that that the playback curve is symbolized as

P (t), then the initial playback delay should be selected as:

∆ ≥ max(t− P−1(lb(t))) (53)

In this equation, P−1 expresses the pseudo-inverse function of the playback curve at the

receiver [102]. Concerning the initial buffer size it should be selected as:

B ≥ max(ub(t)− P (t−∆)) ⇒

B ≥ max(E[R] + V ar(R)− P (t−∆)) (54)

54

The most important problem that can occur at the receiver during the playback of a

streamed video sequence is a buffer underflow. For this to happen, the latency variance

of the packets in flight must be more than the initial playback delay ∆. Figure 22 depicts

this situation very clearly by showing the several curves that are involved in the playback

process. This constraint can analytically be expressed in the following form given the pre-

viously calculated quantities: R(t) ≥ P (t) ⇒ G(R)t ≥ c1(t−∆). Given that the playback

rate is c1 bytes/sec, the average buffer occupancy at the receiver will be:

E[B] =
E[R] + E[V]

(E[X] + 1)RTT
− c1((E[X] + 1)RTT) (55)

If we solve equation 55 for c1 we get the optimal playback rate given specific network con-

ditions. Moreover, the probability PD that was estimated earlier, described the probability

for a packet to be delayed due to retransmissions or due to network delayed packets that

are also invalid for playback. So for TCP this value could also be calculated as follows, by

revisiting equation 34:

PD = P{latency + time sent > deadline}

or

PD = P{ds

G
+ ts > td} (56)

where ts and td denote a packet’s sent time and its playback deadline respectively. Now the

expected reception time for a data chunk with size ds will be:

E[tr] = E[ts] +
ds

E[G]
(57)

If we account for the playback delay, the probability of successful playback will be:

Psuccess = P{ds

G
+

b1

c1
+ ts < td} (58)

By solving the above equation, we can obtain the optimal playback rate c1, for a given

buffer occupancy b1.

55

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Packet loss rate

 5 10 15 20 25 30 35 40

epsilon

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 23: Probability for the buffer not underflowing for varying packet loss rate and the
allowed packet delivery bound with TCP.

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

M
e
a

n
 t

im
e

 (
m

in
)

Mean latency (sec)

TCP analytical [Ka04]

TCP simulation

TFRC analytical

TFRC simulation

(a) Mean time between underflow events

 0.1

 1

 10

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

In
it
ia

l
d

e
la

y
 (

s
e
c
)

Channel packet loss probability

Proposed TCP model

TCP-unaware application

Worst case application-configured

(b) Initial preroll delay (∆) needed to achieve a
BUP<0.01

Figure 24: Numerical and simulation results for validating the playback buffer model.
Parameters: RTO0 = 200 ms, MSS = 1460 bytes, W0 = 1 segment, Wmax = 6 MB, video
duration of 100 sec.

4.5.1 Experiments

Playback Buffer Performance: Experimental results compare the proposed models with

similar work identified in the literature. We reproduce the experiment reported at [102],

where the authors lack a complete end-to-end model for the protocol being used, which in

their case was UDP.

56

Figure 23 presents the probability of the playback buffer not underflowing as a function

of the packet loss rate and the packet delivery bound when TCP is the transport protocol.

The important observation from this figure is that despite the increase in packet loss rate,

the desired packet delivery bound is the one that dominates the probability of the buffer

being full (BFP). Being more elastic with the bound value, the receiver can achieve higher

BFP but of course with lower throughput, when packet loss probability is increased. A very

interesting result is presented in figure 60(a). It presents the mean time between two buffer

underflow events as a function of the end-to-end delay or latency between the two endpoints.

When the TFRC protocol was used, it produced smaller number of buffer underflow events

than TCP as a result of its stable output rate.

Figure 60(b) depicts the initial delay needed at the playback buffer, in order to achieve

a buffer underflow probability (BUP) less than 1%, as a function of the packet loss rate for

TCP. It is obvious that the value of the initial delay is increasing very fast as the packet loss

probability is increased until it saturates in a value close to 7 seconds for a video stream

that has duration of 100 seconds and is making estimation using the proposed TCP model.

However, a streaming application, that is using TCP and attempts to simply estimate the

network induced latency results into a high rate of buffer undeflow events early in the video

streaming process. In order to overcome these underflow events, a larger initial delay ∆

is selected, by using estimate of the RTT [104]. The line called ”worst case”, represents a

fixed value for ∆ that an ”ideal” application could select if it had knowledge of the packet

loss probability range.

Adaptive Playback Buffer: An adaptive playback buffer is capable of accommodat-

ing delay fluctuations for the received packets. With an adaptive playback algorithm, in the

short-run the playback frame rate is kept relatively constant, while it may change signifi-

cantly over time depending on network conditions. This type of playback buffer algorithm

is well suited for a reliable transport service, like the proposed system which is based on

TCP, since it can ”conceal” the delay variations.

We tested a playback adaptation according to the derived equation 56 that expresses

our comprehensive model. For this experiment we added TCP cross traffic of 2 FTP flows.

57

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35 40 45 50

B
y
te

s

Time (sec)

(a) Buffer size evolution over time at the receiver for
a UDP-based system.

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

B
y
te

s

Time (sec)

(b) Buffer size evolution over time for a TCP-based
system with the proposed playback adaption strategy.

Figure 25: Buffer size evolution at the receiver with cross traffic of three FTP/TCP flows.

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500 600 700 800 900 1000

In
it
ia

l
d

e
la

y
 (

s
e

c
)

Playback duration (sec)

AMP-Live [Kal04]

Proposed adaptation for TCP

Fixed playback rate

Figure 26: Experimental results of the required initial delay ∆ needed to achieve a
BUP<0.01.

Results for the buffer size versus time are shown in figure 25. Ideally the UDP-based

system would maintain a relatively fixed varying range for the buffer size. Nevertheless,

the FTP/TCP cross-traffic results into congestion for some periods and this further creates

UDP packet losses. That is why we observe the playback buffer drain for some periods.

However, for the case of the proposed playback speed adaptation (equation 56) for TCP, we

can see that for the first seven seconds (figure 25(b)), the buffer occupancy is relatively high

and in addition data are removed with low frequency. This means of course a low frame

rate at the receiver. However, when congestion incident has passed (around 10 seconds),

58

the end-to-end delay is reduced and proposed playback adaptation, is capable of delivering

more frames. In addition, the playback algorithm adapts to the lower delay, and provides a

higher frame rate and reduced buffer requirements. This results, are very important, since

they depict the importance of having a good adaptive playback algorithm when a reliable

video streaming system is employed.

Figure 26 compares the playback buffering performance models between the proposed

joint transport protocol and playback buffering model and results from [55]. More specif-

ically, we depict results for the initial required delay ∆, before the playback commences,

versus the duration of the video sequence. At [55], the authors als defined a adaptive play-

back adaptation strategy, that is based on a model that considers single two-state Markov

channel, and a deadline constraint ARQ mechanism. However, with the more accurate path

model that we adopt, we get a better estimate of the end-to-end latency when a heteroge-

neous path with wireless and wired links exist. This is the reason why our system needs a

shorter strtup delay as figure 26 indicates.

4.6 RD Optimized Packet Scheduling

In section 4.4, we presented detailed model of the expected decoder distortion when TCP

is used as the transport protocol. In this section we extend the problem of optimal video

streaming one step further: Given the encoder buffer which contains a set of macroblocks Φn
g ,

that belong to frame fn (for F possible frames), how can we define the optimal transmission

schedule s for TCP, so that E[D(fF , Φn
g)] is minimized? How can we take into account

the TCP induced latency and its effect on buffer occupancy, as calculated in section 4.5?

Therefore for a given set of allowed schedules S, the first of the previous two questions can

be formally written as:

s = arg min
s∈S

E[D(fF , Φn
g)] (59)

The search space of the possible schedules S, depends on the number of macroblocks in

the buffer. Clearly an exhaustive search does not represent a practical solution. However,

in [73] the authors considered a similar problem for layered encoded video, and they devised

59

a simple greedy search algorithm for finding schedules that represent suboptimal local solu-

tions. Main feature of the greedy algorithm is that it is less ambitious than a more thorough

algorithm in the sense that it continuously looks for a better video packet, in terms of dis-

tortion, rather than the best video packet. We implemented a simple algorithm for greedy

search, and we found that the actual overhead is no important for real-time encoding since

the number of encoded macroblocks and frames that reside in the encoder buffer is usually

small. The suboptimal greedy search problem is defined for sets of MBs that belong to the

same frame, or in the case where the number of frames in the encoder buffer is small (less

than 3), then the number of MBs in a single GOP defines the size of each subproblem.

Note that the additional playback constraint (section 4.5) essentially means that not

only we should transmit the data packet that will minimize the expected distortion, but

also the packet that is actually expected to arrive at the client by the deadline. This is what

lines 4-9 of the algorithm in figure 27, are exactly doing by identifying the set of MBs that

will actually reach the decoder in time (Φ#). After this decision is made, the algorithm

invokes the greedy scheduling algorithm which identifies the optimal schedule (lines 11-14).

The relative priority of each MB is enforced through a prioritization mechanism so that

MBs that affect distortion the most are committed to TCP first. We also depict in the last

line of the algorithm, a statement that indicates the clients ability to provide feedback to

the sender. The feedback may involve among others, the actual receive time for a packet

and the actual goodput, allowing thus the implementation of more efficient estimators at

the sender.

4.6.1 Experiments

Figure 28 presents PSNR as a function of the channel packet loss rate. We compare the

packet scheduling algorithm with the previously developed schemes that do not employ any

intelligence in the scheduling process, namely TCP-RDOMS and vanilla TCP streaming.

For smaller packet loss rate, packet scheduling can have an effect on the decoder PSNR

since a small number of packets are lost. However, as the packet loss rate is increased, the

use of an optimal packet schedule has less effect since there is higher probability for the

60

steady state()
1: G ← // estimate TCP goodput, equation 50
2: r̃i ← // estimate arrival for MBn

i , equation 57
3: P̃D ← // estimate PD, equation 56
4: for all MB i ∈ Φ do
5: if t̃ri < tdi

then
6: Add MBi in Φ#

7: else
8: Drop MBi

9: end if
10: end for
11: for all MBs ∈ Φ# do
12: Find optimal set Φ∗ that min(E[D]) // equation 119
13: set priority(send buffer,MBi)
14: end for
15: send(MBs∈ Φ∗)
recv report()
1: Client may report in feedback messages the both ẽ = |tr − t̃r| and G.

Figure 27: Pseudo algorithm for two-stage optimal schedule construction at the streaming
server.

 20

 22

 24

 26

 28

 30

 32

 34

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
S

N
R

 (
d
B

)

Channel packet loss probability

256Kbps, proposed TCP RDOMS + scheduling

256Kbps, proposed TCP plus RDOMS

256Kbps, TCP BWSS from [Mehra03]

Figure 28: Results for streaming experiment with the proposed RD optimized packet
scheduling algortihm.

packet to be lost. Nevertheless, on average a gain of nearly one db can be obtained for this

scenario. We plan to explore the tradeoff when different MB set sizes are selected for the

scheduling algorithm, over the introduced latency. However, the search space for real-time

video streaming is limited since the number of encoded frames has to remain small in order

to avoid excessive delays.

61

(a) TCP

(b) Proposed RD optimized packet scheduling with TCP

Figure 29: Captured frames for the proposed RD optimized packet scheduling algorithm.

Frames in figure 29 were captured for two different RD optimized packet scheduling

algorithms. In figure 29(a) we present results obtained from TCP-based streaming. The

main visual impairment that we observe is the distortion in a specific area of the received

frame. The problem that caused this behavior is the burst loss, which made impossible

even for error concealment to produce a visual result. However, the proposed system 29(b)

avoids the previous behavior for the following reason: It avoids scheduling critical packets

at the same instant since it estimates the increased packet loss that the packet will suffer.

4.7 Conclusions

In this chapter we presented an analytical study that characterizes the performance of

video streaming with the transmission control protocol (TCP). Initially, we developed an

analytical model of the expected video distortion at the decoder with respect to the TCP

parameters, channel state, and error concealment method at the receiver. Based on this

model we proposed an algorithm for RD optimized mode selection (RDOMS) for video

streaming with TCP. Experimental results for real-time video streaming showed PSNR

improvement of nearly two db over currently proposed TCP-based streaming mechanisms.

The next contribution is the development of a joint model of the TCP protocol, and the

playback buffer at the receiver. Based on this model, we derived the optimal playback rate

62

at the decoder. Subsequently, based on the two models, we proposed an algorithm, for

RD optimized packet scheduling with TCP. Our results show an additional improvement of

nearly one db, when packet scheduling is applied together with the RDOMS algorithm.

Therefore, we can see that TCP presents a viable solution for video streaming applica-

tions. Moreover, we showed that if additional optimizations can be preformed at the video

encoder side, further quality improvement can be observed. The wide-scale deployment of

TCP, and the ability to realize the proposed algorithms at the application level, can assure

that the proposed streaming mechanism presents a practical video streaming solution.

63

CHAPTER V

MODELING THE EFFECT OF HANDOFFS ON

TRANSPORT PROTOCOL PERFORMANCE

In this chapter, we present a new analytical model for studying the effects of mobile handoffs

on the performance of transport protocols. Specifically, we develop analytical models that

characterize the throughput, latency, and jitter of TCP and TFRC as a function of the

wireless handoff induced packet loss rate and the relative disruption time. The result of our

analysis is a modular performance evaluation model, that may be used for analyzing the

effect of various mobility management architectures and mobility scenarios for existing and

emerging transport protocols. The development of this model for the case of bulk traffic

workload, is essential for analyzing and modeling the performance of media applications in

the next chapter of this dissertation.

5.1 Introduction

The wide-spread success of IP-based mobile and wireless devices, has created a need for new

network protocols and architectures so that revenue-generating and seamless multimedia

services can be provided to the end user. One of the first challenges that has to be resolved is

that of mobility management. The functionality that mobility management defines consists

of two separate operations — location management and handoff management. Currently,

the protocol that is considered to offer a practical solution to the above problems is mobile

IP [83], since it offers a solution to these two problems at the same time. First, it allows

a host to be reached through a static IP address (location management), which is called

the home address (HoA). Second, it allows transport layer sessions like TCP connections

to continue when the underlying host moves (in mobile applications) and changes its IP

address (handoff management). The latter is important to higher layer protocols that offer

reliable service delivery [103, 88].

64

In general, TCP performance suffers from several problems due to handoffs caused

by host mobility: The first problem is related to blackouts that lead to successive timer

expirations and increase of the RTO every time an unsuccessful transmission takes place [99,

10]. A mechanism for partly resolving this problem is through explicit layer 2 notifications to

TCP, so that it can freeze the RTO [47, 75]. The second problem is the long and fluctuating

delays due to local retransmissions in the wireless link [26, 28] or due to deep buffering in

cellular access networks [28]. This situation can result into the invocation of congestion

control algorithm and substantial decrease in the throughput. Third, packet losses due

to wireless errors that have a similar effect since TCP is unable to distinguish them from

congestion-induced losses.

Several methods have been proposed to resolve these problems caused to TCP [103,

9, 10]. Some mechanisms are related to split connection protocols [10], and others to

mechanisms for end-to-end differentiation of congestion and wireless losses based on delay

measurements [24]. While TCP-compatible rate control protocols have been studied ex-

tensively (e.g., the IETF standardized TCP-friendly rate control protocol (TFRC) [46]),

there has not been much study of for their behavior during wireless handoffs. We are aware

of only one recent study, reported in [42], where the authors evaluate the performance of

TFRC during handoffs between asymmetric networks. The authors identify performance

degradation in TFRC due to its slow-responsiveness, and suggest the use of L2 triggers so

that the protocol can adjust faster to the conditions of the new link. However, there is no

detailed performance analysis that incorporates the used mobility protocol.

There are several models for quantitatively analyzing TCP throughput [80, 95], and

latency[22], specifically in the context of the wired internet. Considerable amount of work

on modeling mobility management protocols is available, and especially for mobile IP and

its derivatives [31, 4, 114, 15, 16]. The main focus of the these mobility management

modeling approaches has been the characterization of the signalling and processing loads as a

measure of protocol performance [114, 71, 79]. Some related recent efforts include [16], where

the authors investigate the performance of two IETF handoff protocols, namely pre/post-

registration for UDP. They develop a simple analytical model that estimates the packet loss

65

rate and delay. Their results are restricted to the case of CBR unregulated traffic sources.

Similar approaches, that do not consider complex transport protocols, and instead focus on

UDP, have been published for mobile IP and mobile IP with route optimization [15, 31].

5.2 Transport Protocol Performance Models

We now propose a model that attempts to capture the behavior of TCP and TFRC in

during handoff between heterogeneous networks.

Internet
MH

CH

AN2

AN1

GB

H
Three state Markov

model for access

networks

Figure 30: End-to-end path model for transport protocol characterization during handoffs.

5.2.1 Heterogeneous Network Model

Consider an end-to-end session with the data flowing from the correspondent host (CH) to

the mobile host (MH) as figure 30 indicates. According to the mobility scenario, the MH

is initially associated with the first access network (AN1), and at some time in the future

it may move towards AN2. The two access networks are modeled separately, while they

are both attached to the core network (C) which is the Internet. We make the assumption

that while the mobile host is connected to AN1, the transport protocol is in steady state.

Subsequently, after handoff is performed to AN2, the protocol will reach the steady state

at some time in the future.

66

The core network is modeled as a two-state Markov chain, an approach that has been

shown to predict Internet packet loss behavior quite well [82]. The access networks are

modeled as a three-state Markov chain, in which the three states are good (G), bad wireless

(B) and handoff (H). This implies that we separate the handoff induced packet losses, from

other packet losses due to other reasons in the AN. Note that the adoption of a different

path model, will not alter the analytical formulas developed in this chapter, but may affect

the accuracy of the derived packet loss probability.

Note that the bad state for an AN corresponds to bad state due to a handoff. The benefit

of creating different models for the different access networks, is that the characteristics

of heterogeneous networks can be captured when handoff takes place. We also have to

mention, that each end-to-end path, that corresponds to one of the two access networks

and the core network, is characterized by different forward and backward trip times (FFT

and BTT). This path model is general enough so that it can accommodate the modeling

of different handoff management protocols. In the appendix B, we derive simple models

for hierarchical mobile IP (HMIP), and mobile IP with route optimization (MIP-RO) that

can inter-operate with our path model. From these simple models, we derive two values:

the packet loss probability ph, and the disruption time X for each mobility management

protocol. For the rest of the analysis in this section, we assume that the MH is using Mobile

IP so that the TCP connection does not break due to a change in the IP address.

5.2.2 Handoff Scenario and TCP Behavior

We model a TCP connection between two endpoints by considering rounds (as in [62]), that

have a duration of one RTT. We name the number of RTT rounds that pass until there is a

packet loss as the NL round (figure 31). During this round, TCP sends a burst of packets

equal to the allowed window, and waits for acknowledgments. This approach, is based on

the renewal theory properties, similar to the methodology we developed in chapter 3. We

selected this method so that we can obtain a closed form solution that can be used for

practical applications.

We now describe the behavior of TCP during a handoff of duration X when mobile IP is

67

Sequence

no.

time
L2 handoff

disruption time

X

RTO

packet lost

packet received

ack received

packet sent

FTT1

BTT1

C: No more acks

received, RTO

starts

FTT2

BTT2

BA

RTT round

E

Figure 31: Packet-level TCP behavior during IP layer handoff.

used. Figure 31 depicts the packet-level behavior of both the TCP sender and receiver. We

define tA and tB as the time instants at which handoff was initiated and ended (X = tB−tA).

We assume that TCP is in steady state and sends packets to the MH that is attached to

AN1. As the MH moves, at some time instant, it will break its L2 connection with AN1,

and several packets can be lost as figure 31 indicates. After this happens, the sender will be

receiving acknowledgments that are in flight and were sent before the MH broke connections

to AN1. These ACKs will trigger the sending of more packets. When the flow of ACKs

stops (at time instant tC), the sender will not be able to clock out new packets. Depending

on X and ph, the RTO may keep increasing until connection has been established or the

session times out. In the next subsection, we will derive the value for ph.

5.2.3 Handoff Induced Packet Loss

The probability of handoff induced packet losses is the probability of the one way latency

L, being smaller than the handoff duration X:

68

ph = P{L < X} (60)

We define as fL the distribution of the end-to-end latency. Concerning the disruption time

X, it is a parameter that depends on the mobility management protocol used. In general

it can have a fixed value for a specific protocol [114]. Therefore, the only random variable

that has to be calculated in equation 60, is that of the network latency L or FTT . We

model the one way network latency distribution fLN
, as a shifted Gamma distribution with

probability density function [25, 64]:

fLN
(t) =





λe−λt(λt)ν−1

(ν−1)! if t ≥ 0

0 if t < 0

and a cumulative distribution function (c.d.f.) of:

FLN
(t) =





1− e−λt (λt)ν

ν! if t ≥ 0

0 if t < 0

with mean ν/λ, and variance ν/λ2. Therefore, by using the previous equations, we can

obtain the packet loss probability due to handoff ph:

ph =
e−λXλν

ν!
(
e−λRTT (X + RTT)ν − (X)ν

)

(61)

Handoff with Forwarding Buffer: We now account for the case where a mobility

management protocol employs a buffering mechanism at the old AN, when a MH performs

a handoff to the new AN, so that in flight packets are not lost. If we assume that the

server where the buffering is performed, is modelled as an M/M/1/C queue [16], with finite

capacity C and average load ρ, then the packet loss probability due to handoff has to be

recalculated. The packet loss probability now is equal to the conditional probability that a

packet arrives faster in the access network, given that the buffer is full:

phb = P{L < X|N = C} (62)

69

So the conditional probability mass function will be Fhb = P{L < X and N < C}, given

that FN is the c.d.f. of the M/M/1/C queue. Eventually, this will give:

phb = FLN
(X)FN (C)

= ph
ρC(1− ρ)
1− ρC+1

(63)

Therefore, equations 61 and 63, describe in a parametric form, packet loss probability

directly attributed to handoff.

5.2.4 TCP Throughput

Having calculated the packet loss probability due to handoff ph, we now calculate the

actual number of packets lost. This number, will depend primarily on the the number of

in-flight packets which is the value of the congestion window. Since TCP is a window-

based protocol [99], assume that the sender has sent a window w worth of packets in an

RTT round. The probability that the first k packets are acknowledged in this round, given

that the rest is lost because of a handoff or packet loss in the wireline path, is given by:

PH1(w, k) = PH(w, k)
⋃

P1(w, k). Because packet loss in the wired path and handoff loss

are independent, the previous equation becomes:

PH1(w, k) =
(1− ph)kph

1− (1− ph)w
+

(1− p1)kp1

1− (1− p1)w
(64)

since the cause of the (k+1)-th packet loss while the MH is attached to AN1 can either be

due to handoff ph, or due to packet loss in the wired link of AN1 (p1).

Case 1, tB < tC + FTT1: From figure 31 we can see that if tB > tC +FTT1, then clearly

no duplicate ACKs will be received at the sender, and the only way for TCP to resume

the data flow is by expiration of the RTO of the first lost packet. On the other hand, as

X shrinks, and if tB ≤ tC + FTT1 the probability to receive a number of the last packets

(close to point C) is increased. We need to find the probability that at least three of these

last sent packets, are received resulting into the generation of three duplicate ACKs. If

this happens, then the sender would fast retransmit the first lost packet, resulting into a

faster recovery. We can rewrite the previous equation tB ≤ tC + FTT L1 ⇒ X ≤ RTT1.

70

Therefore, the probability to loose m packets from the n sent in the handoff round is given

by:

G(n,m) = pm
h (1− ph) if m ≤ n− 1 (65)

and the probability to receive less than three from a round of k send, leading thus to a TO

is:

g(k) =
∞∑

k=0

G(2 + k, k)P [w = 2 + k] (66)

where P [w = 2 + k] gives the probability that the current window is 2 + k packets. From

equations 64 and 65 we can get the probability that a loss in a window of w packets will

lead to a timeout. This value will be one if w ≤ 3, since if one of the three packets is lost,

not enough duplicate ACKs will be received.

If w > 3, the probability to have a TO will depend on an additional third component,

besides the two that we just described:

PTO =
2∑

k=0

PH(w, k)(1 + g(k)) +
w∑

k=3

F (w, k)h(k) (67)

In this equation, the third component F (w, k) represents the probability of a packet loss in

a regular end-to-end path characterized by a packet loss rate p similar to equation 64.

Case 2, tB > tC + FTT1: In the case where tB > tC + FTT1, the retransmitted packet

is lost and the value of RTO will increase as shown in figure 31. However, if the handoff

disruption continues, the RTO could grow even larger. Therefore, the average duration of

a timeout has to be derived, based on the probability that tB > tC + FTT1. The number

of the retransmitted packets that will be lost leading to further RTO increase determine

when the data flow will be resumed on the new link. Given that the duration of a handoff is

X = tB − tA, the number of retransmitted packets depends on the duration of the timeout

period, and subsequently on the number of exponential growths the TO timer experienced.

We know that for TCP, k consecutive RTO events will have a duration [99]:

71

Lhk =





(2k − 1)RTO0 if k < 6

(63 + 64(k − 6))RTO0 if k ≥ 7
(68)

where RTO0 is the initial value of the retransmission timer. By inverting this expression,

we obtain the number of RTO expirations:

k =





log2(Lhk
RTO0

+ 1) if Lhk ≤ (26 − 1)RTO0

Lhk
RTO0

+ 5 otherwise
(69)

So the number of experienced TOs will be obtained by taking the d e of Lk
RTO0

. This value

will give the number of RTO expirations and the number of retransmitted packets. The

previous equation finally gives the expected number of packets sent during tC < t < tB:

E[Sh] =





log2(d X
Lhk

e+ 1) if X ≤ (26 − 1)RTO0

d X
Lk
e+ 5 otherwise

(70)

and the duration of the induced TOs is E[NTO
h] = E[Lh] + X.

Concerning the evolution of the congestion window, we next derive the equations that

describe its evolution and the duration of a round in RTTs X until a packet loss occurs.

Following the notation from chapter 3

E[A] =
b

2
E[W] =

2 + b

6
+

√
2b(1− p)

3p
+

(2 + b

6

)2
(71)

Finally, by combining all the previous equations, the complete TCP throughput model

that considers handoffs between asymmetric links is given by:

THTCP =
1−p1

p1
+ 1−p2

p2
+ E[W1] + E[W2] + 1−PTO

1−p1
+ PTOE[Sh]

RTT (E[A] + 1) + RTO0
(1−PTO)PTO

1−p1
+ PTO(X + E[L])

This equation essentially includes for every stage of the handoff, the expected number

of packets sent, over the expected time needed to send these packets. In this way we are

able to fully quantify the throughput of TCP during a handoff between asymmetric links.

It is interesting to note that we have described the TCP throughput as a function of the

disruption time X, which is essentially controlled by the mobility management scheme in

use, and the handoff packet loss rate ph.

72

5.2.5 TCP Latency and Jitter in Congestion Avoidance

After developing an analytical model for TCP’s end-to-end throughput, we subsequently

model the latency for the transfer of a specific chunk of data bytes d when the protocol

is in the congestion avoidance phase. TCP in general suffers from latency fluctuations,

due to the retransmissions and the queuing delays in the network. So the latency for the

delivery of a single packet, depends on the cause of the retransmission. If it is a TO the

latency will be equal to the duration of the TO, while if it is a TD, a delay of an RTT

will be experienced. We showed that the probability for a packet to be recovered with fast

retransmission is 1 − PTO (equation 67). Therefore, the latency of a single retransmitted

packet is L = PTOLk +(1−PTO)RTT , that can be due to an RTO expiration PTOLk or due

to a fast retransmission (1−PTO)RTT . The average latency that a lost packet experiences

is:

E[L] = PTOE[NTO] + (1− PTO)RTT (72)

Now the average latency for a chuck of d data bytes, will be:

Ld =
d

THTCP
(73)

Special attention is given to the value of latency fluctuations (i.e., jitter), which is defined

in [92] as the difference between the time instants that two packets were sent and the time

instants at which the two packets were received. We can write this statement for two packets

i and j as follows: Ri − Rj − (Si − Sj) = Ri − Si − (Rj − Sj) = E[Li] − E[Lj], while the

average jitter is equal to the delay variance: D̄ = V ar(L). This value is derived from the

previous as:

V ar(Ld) = E[(Ld −E[Ld])2] = E[L2
d]−E[Ld]2 (74)

The values for E[Ld] and E[L2
d] are easily calculated from the previously developed equa-

tions.

73

S(t)

time

link1 link2

A: L2 lost with

link1

B: L2 with link2
established

Convergence time

RTT1

t_inter1
t_inter2t_interx

B’:

Figure 32: TFRC packet-level behavior during IP layer handoff.

5.2.6 TFRC Throughput and Latency

After dealing with TCP, we proceed with the characterization of TFRC. TFRC was intro-

duced earlier as an equation-based rate control scheme. In this chapter we consider TFRC

to be implemented on top of UDP, since UDP is protocol of choice for real-time media

streaming applications. TFRC uses the closed form equation for TCP throughput in order

to regulate the sender’s output rate:

TTFRC =
s

RTT
√

2p
3 + RTO0(3

√
3p
8)p(1 + 32p2)

(75)

where s is the packet size, RTT is the RTT estimate, and RTO0 is the value of the re-

transmission timer. In addition TFRC follows an inter-packet spacing algorithm at the

sender:

tinter =
s
√

RTTcur

T ∗M
(76)

M is the average of the square roots of the RTTs calculated using an explicit window moving

average (EWMA), and RTT0 is the most recent RTT sample [46]. Given that Si and Sj are

74

the transmit times of two packets sent successively, the inter-packet spacing at the source

is given as Si − Sj = tinter. However, the packet spacing at the receiver Ri − Rj , depends

on the network queuing delays, which is the only cause of jitter in TFRC (figure 32). Note

1: if p > 0 then
2: X calc = T (p,RTT, T 0)
3: tfrc x = max[min(X calc, 2 ∗X recv), s

tmbi]
4: else
5: if tnow − tld ≥ RTT then
6: tfrc x = max(min(2 ∗ tfrc x, 2 ∗X recv), s/RTT)
7: end if
8: tld = tnow
9: end if

Figure 33: The TFRC rate estimation algorithm.

that, equation 75 does not represent the actual TFRC sending rate but only an upper bound

for it. The actual output rate of TFRC is calculated using the algorithm in figure 4. In this

algorithm, s represents the packet size, tld is time when the rate was last doubled, tmbi is

the maximum back-off time (64 seconds by default), and Xrecv is the average receive rate.

If p is zero, no packet loss has yet been seen by the flow and in this case, the TFRC sender

emulates the slow start alforithm of TCP by doubling the transmission rate every RTT.

The main feature of TFRC is that it reacts slowly to RTT changes and this means that

the throughput estimate changes slowly when compared with TCP. Therefore, a sudden

change in the RTT and bandwidth of a link, as is the case with handoffs, will lead to

considerable packet losses. We will now attempt to model this behavior. We start by

identifying the RTT estimation procedure that TFRC uses. Given a decay factor df , the

n-th RTT estimate is calculated as follows:

RTTn = df ∗RTTn−1 + (1− df) ∗
√

RTTcur (77)

with RTTcur be the last actual RTT measurement. When the TFRC sender does not receive

feedback during an entire RTT, it reduces the output rate by half. If we assume that at

time instant tB (figure 32), where handoff is over, the sender sends at least one packet

and receives feedback, then after RTT2 seconds, the sender will receive the first feedback

75

report. So for a handoff duration of X seconds, the sender will be gradually reducing the

rate by half every RTT1, since this was the last RTT estimate. Therefore the total number

of packets sent during X will be gradually reduced with a total number sent during X:

E[Sh] =

d X
RTTcur

e∑

i=0

1
2i

TTFRC ×RTT (78)

Therefore, for two links with different characteristics, p1, RTT1 and p2, RTT2, the actual

rate at the sender will be given for links 1,2 or when t < tA or t > tC (figure 32) by:

TA−,B+

TFRC = max
(
2 min(TTFRC , 2(1− P1,2)TTFRC ,

s

tmbi

)
(79)

When tA < t < tB then:

TAB
TFRC =

1
X

(d X
RTTcur

e∑

i=0

1
2i

TTFRC ×RTT
)

(80)

If tB < t < tC , the sender gradually starts to catch up with the new link bandwidth:

TBC
TFRC =

1
tcv

(ncv∑

n=1

TTFRC(RTTn cv)×RTTn

)
(81)

We define as convergence time, tcv, the time needed for TFRC to obtain its fair share of

the bandwidth on the new link. Equation 77 can be expanded and written as:

RTTn = dfn ∗RTT0 + dfn−1(1− df) ∗
√

RTTcur

+ ... + (1− df) ∗
√

RTTcur

which if we solve for n gives:

ncv = logdf

(RTTn − (1− df) ∗ √RTTcur

RTT0(1− df)− (1− df) ∗ √RTTcur

)
(82)

Therefore, ncv will give the number of RTT rounds needed in order for the RTTn estimate

to converge to the RTTcur. In the handoff case, RTTcur represents the RTT2 of the new

link while RTT0 is the first estimate we had and it is RTT1. Practically we would like for

RTTn to be close to 90% of the RTTcur. So the total convergence time will be:

tcv = X + ncv ∗RTTn (83)

76

Concerning the expected latency for TFRC in congestion avoidance phase and it would

be:

E[LTFRC] =
data size

E[TA
TFRC] + E[TAB

TFRC] + E[TBC
TFRC]

(84)

5.3 Simulations

The WLAN topology that forms the basis of the simulations described in this section is

shown in figure 34. The values for bandwidth and delay of the links are 1Mbps/100ms and

500Kbps/100ms for the GFA links, and two FA links, respectively. The case study simulated

is now described — Initially, at time 5 seconds, the MH initiates an FTP data flow from

the correspondent host (CH). According to the scenario, at time 50 the MH starts moving

away from the first access point (AP), at a speed of 10m/sec, and is heading toward the

other AP. The FA follows the Mobile IP procedure in order to notify the HA after the MH

registers with new FA. In the case of Hierarchical MIP, the GFA is the one that handles

the handoff from the two FAs that correspond to the two access points: AP1, and AP2.

Finally, for the case of MIP-RO, we configured the MH to send a binding update directly to

the CH. For all these experiments we used the ns-2 [77] network simulator with appropriate

modifications when necessary. The simulations were run for 20 times, averaged results are

shown in all the figures in this section.

5.3.1 Results for Mobile IP

By calculating the variance of the end-to-end latency, we essentially estimated the average

value for the jitter. This will provide crucial insight into the precise correlation of transport

protocol algorithms and the end-to-end jitter. The next step is to derive bounds on the

average latency given a specific packet loss rate. Using Chebychev’s inequality for the

latency random variable L, we get:

P (|L− E[L]| ≥ ε) ≤ V ar(L)
ε

(85)

The derived latency bounds for TCP are shown figure 35(a) and show that given a short

disruption time, the latency is not sharply increased. This indicates that even if handoff

77

ServerLAN

AP2AP1
FA

LAN

FA

GFA

AP0

MH

Figure 34: Simulation topology for WLAN handoff experiments.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Packet loss probability 5

 10
 15

 20
 25

 30

epsilon

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(a) Probability to meet the latency bound ε

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Packet loss rate 0.5

 1
 1.5

 2
 2.5

 3

RTT (sec)

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

Throughput (packets/sec)

(b) Throughput prediction for TFRC as a function of
RTT

Figure 35: Analytical results for TCP and TFRC during handoff with Mobile IP as a
function of the packet loss rate. Parameters: RTT (1) = 400 ms, RTO

(1)
0 = 800 ms,

RTT (2) = 800 ms, RTO
(2)
0 = 1600 ms, W0 = 1 segment, s = 1000 bytes, Wmax = 4

MB.

management is controlled by a relatively slower process like mobile IP, an application will

not suffer dramatically. As ε grows, which means that the upper and lower bounds become

more elastic, the probability to receive a number of packets is relatively insensitive to the

packet loss rate.

Further analytical results for TFRC are presented in figure 35(b). In this figure, we

show the throughput estimate of the proposed model for TFRC, when Mobile IP was the

78

underlying mobility protocol as a function of the handoff induced packet loss probability

and the RTT on the new link. This figure clearly indicates the disadvantage of baseline

mobile IP, which results into very fast throughput degradation with a slight increases of

PH .

5.3.2 Results for HMIP and MIP-RO

With this experiment, we want to evaluate the effect of the handoff disruption time X, on

the throughput and latency of a session between the server and the client. As expected, even

with MIP-RO, TCP throughput suffers considerably when disruption time is increased. The

proposed models in this chapter, predict a logarithmic decrease in throughput as the packet

loss rate is increased, which of course depends on the duration of the disruption. Concerning

the throughput for the combination of HMIP/buffering, we can observe in figure 36(a) that

TCP throughput remains pretty stable until the point where the disruption time comes

close to the average RTT of the end-to-end session. Packets are buffered in the old AP

and forwarded to the new AP, but after the buffer overflows, packets are dropped and the

throughput decreases. This means that after the point where the forwarding buffer is full,

the throughput will continue to decrease very fast since any new packet will be dropped.

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h
p

u
t
(K

b
y
te

/s
)

Analytical for MIP-RO

Simulation for MIP-RO

Analytical for HMIP+buffering

Simulation for HMIP+buffering

(a) TCP

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

T
h

ro
u

g
h

p
u

t
(K

b
y
te

/s
)

Average disruption time TH (sec)

Analytical for MIP-RO

Simulation for MIP-RO

Analytical for HMIP+buffering

Simulation for HMIP+buffering

(b) TFRC

Figure 36: Effect of disruption time on throughput for a session with a duration of 15
seconds. Parameters: RTT = 1 sec, RTO0 = 1 sec, plr = 0.02, s = 1500 bytes, MSS =
1460 bytes, W0 = 1 segment, Wmax = 4 MB.

79

In figure 36(b) we present results for TFRC throughput. TFRC uses a rate control algo-

rithm that reacts slowly to packet loss and RTT fluctuations. In addition TFRC makes use

of a packet spacing algorithm that arranges the packets in time. As shown in figure 36(b),

we see that the combined MIP-RO/TFRC suffers from minimal packet losses and through-

put degradation. With the addition of a buffer in the previous AP, these losses are reduced

further. Also it is important to note that since TFRC spaces the packet in time, the buffer

at the previous AP should not overflow frequently since it does not receive packet bursts as

with TCP.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

L
a

te
n

c
y
 (

s
e

c
)

Average disruption time TH (sec)

Analytical for MIP-RO

Simulation for MIP-RO

Analytical for HMIP+buffering

Simulation for HMIP+buffering

(a) TCP

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

L
a

te
n

c
y
 (

s
e
c
)

Analytical for MIP-RO

Analytical for HMIP+buffering

(b) TFRC

Figure 37: Effect of disruption time on TCP and TFRC latency for a session with a duration
of 10 seconds. Parameters: RTT = 200 ms, RTO0 = 400 ms, plr = 0.02, s = 1500 bytes,
MSS = 1460 bytes, W0 = 1 segment, Wmax = 4 MB

Latency results are presented in figure 37. For the combination MIP-RO and TCP,

latency is increased continuously, after the disruption time is larger than the one way end-

to-end delay. This results in the first packet losses and the first retransmitted packets.

With HMIP, the latency incurred due to a handoff is bounded by the latency between GFA

and MH. The use of buffering eliminates a series of packet losses, reduces RTO expirations

and fast retransmissions leading to reduced latency as we expected from equation 72 and

can be seen in figure 37(a). However, as the disruption time increases, packet losses are

observed. Results for TFRC are shown in figure 37(b). We can see that the latency for

the transport of a specific data chunk, is not penalized as severely as with TCP, due to the

smooth variations of the TFRC rate control algorithm.

80

5.3.3 Recovery Period

Recovery period is represented by the time the MH has to be out of the handoff state, so

that the achieved throughput in this time period is nearly the same as that prior to the

handoff. Formally, what is the x for a given X, so that:

limts→xT (X) ≡ T (0) (86)

The answer to this question can give us useful feedback concerning the effect of the mobility

ratio on the TCP throughput. Figure 5.3.3, presents results for this experiment when base-

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 0.2 0.4 0.6 0.8 1

S
ta

b
ili

z
a
ti
o
n
 t
im

e
 (

s
e
c
)

Average disruption time TH (sec)

Analytical for TCP+MIP

Simulation for TCP+MIP

Analytical for TFRC+MIP

Simulation for TFRC+MIP

Figure 38: Required recovery time versus disruption time for both TCP and TFRC.

line Mobile IP was used for both TCP and TFRC protocols. We see that for our model the

required recovery period, is increased exponentially diverging from the real measurements

which are not so pessimistic. We believe that this behavior is due the interpretation of

more losses as a TO indication instead of TD. However, the TFRC model does not have to

classify packet loss types, allowing thus a more accurate estimation as figure 10 indicates.

5.4 Conclusions

In this chapter we presented a model for studying the effects of wireless handoffs in two

transport protocols, namely TCP and TFRC. The model was found to be accurate for

TCP in both the cases where HMIP and MIP-RO were used as the underlying mobility

management protocols. However, the TFRC model predicts the expected throughput with

81

even better accuracy, due to the simpler protocol algorithms. For example the worst case

error for the TCP model was nearly 22% while for the TFRC model it was 13%.

An important observation from the conducted experiments is that the use of buffering

in the old access network, can significantly improved the delivered throughput. If the

requirements of the system specify that no packet loss should take place, the rule of thumb

for TCP, is that the buffer size should be equal to the bandwidth-delay product of the

old access path times the expected disruption time. Concerning TFRC, we found that the

required forwarding buffer size should be surprisingly bigger by 60% than TCP. The reason

for that is the slow responsiveness of TFRC which does not drastically cut its rate, resulting

in the need of a larger buffer.

We also introduced in this chapter the notion of the ”recovery period”, which is defined

as the time required for the transport protocol to achieve the nominal throughput in a new

link, after a handoff that lasted X. The slow-responsive rate control algorithm of TFRC,

requires less time in order to recover when compared with TCP. However, we found that as

the disruption time is increased, TFRC suffers from more packet losses than TCP, due to

the slow-responsive algorithm, which is persistent on sending new packets to the network.

82

CHAPTER VI

VIDEO STREAMING IN HETEROGENEOUS MOBILE

WIRELESS NETWORKS

Mobile wireless networks today are characterized by a high level of heterogeneity and diverse

application scenarios. Most of the media streaming systems usually account for the effect

on performance of either the wireless link, or the wireline Internet, or host mobility. In this

chapter we move one step further, and we develop an analytically-driven video streaming

protocol, suitable for heterogeneous wireless networks where both handoffs and random

wireless errors are possible. Our approach is based on the development of accurate latency

models for the two transport protocols that concern us: TCP and TFRC. Subsequently,

our comprehensive model is used for driving the development of a protocol for managing

an end-to-end video streaming session in a heterogeneous wireless environment. Main op-

eration of the protocol is the estimation of several parameters that capture the behavior of

the underlying transport protocol and the playback process at the mobile client. These pa-

rameters are then used for selecting the optimal playback buffering at the client and packet

scheduling at the server.

In the second part of this chapter, we propose a new media-aware soft-handoff protocol,

which when it is combined with the previously developed streaming protocol, it can assure

even better QoS for a media streaming session. With the development of this complete

protocol suite, we demonstrate that the use of analytical, closed-form models that capture

the effect of heterogeneous wireless networks, can be utilized by a practical cross-layer

optimized protocol that controls a unicast streaming session. We prove with extensive

experimental and simulation results, that the algorithms of the proposed protocol, can

provide better video quality at a mobile client in a heterogeneous wireless environment.

83

6.1 Introduction

The need for rich media services in the next generation heterogeneous mobile networks,

has driven the development of several new protocols that follow different approaches in

order to achieve this goal [110]. Video streaming is one of the applications that drive

and will continue to drive the need for improved mobile services. Media streaming can

be realized with several underlying technologies that currently exist in the wired Internet.

One of the dominant media delivery systems for unicast or multicast applications today, is

the client/server model. Despite however, the success of this service model in the wireline

domain, in the case of wireless networks, media services have to face additional problems like

the time-varying error rate and the fluctuating bandwidth. In addition, the heterogeneity

of the several existing access networks today complicates even more this task. Therefore,

it is important for a media delivery system to address these issues in the case of mobile

networks in a systematic way that carefully considers all the necessary parameters.

The most interesting method of video delivery is through streaming, where the video

server gradually transmits to the client part of the media stream [110]. Figure 39 presents

a simplified view of a mobile streaming architecture in a heterogeneous wireless network.

The realization of a true end-to-end architecture that optimizes the performance hot-spots

in this complex inter-network, is a real challenge due to the inherent heterogeneity of the

system. The literature contains several studies for media delivery platforms and video

streaming especially for the Internet [2, 117, 33, 64]. However, their main feature is that they

specifically focus on improving performance for a single parameter that affects performance

in the end-to-end path. Therefore, in order to perform efficiently the media delivery service

in terms of throughput, latency, jitter, and resource utilization, several factors that affect the

end-to-end performance, have to be considered carefully, and incorporated to the streaming

protocol if this is possible.

This chapter represents an effort to unify the results of the previous chapters, and pro-

ceed with the formalization of media delivery in heterogeneous wireless networks, through

consideration of the several parameters that affect this process. We develop performance

models that provide a balance between accuracy and simplicity. Simplicity is necessary for

84

Internet

Media

server

Access

network

Access

network

Proxy / content

replica

Figure 39: Simplified wireless media streaming architecture.

the use of the analytical closed-form formulas for online use by a media streaming proto-

col. Our goal is that after the formalization of the problem, we will be able to answer these

questions: What is the most efficient transport protocol to use for a wireless mobile network

which exhibits certain characteristics? Given that we can distinguish between packet loss

that happens due to handoffs or due to wireless errors, how can a streaming protocol can

be engineered? What are the options that an application has given that it uses a specific

transport protocol like TCP, TFRC or the new SCTP?

6.2 Related Work

The area of error-resilient wireless video transmission has attracted significant research in

the last years due to the high demand for media application in wireless devices. Mechanisms

like forward error correction (FEC) [39, 58], ARQ [119], and video unit interleaving [109],

have been extensively researched and reside at the forefront of the tools for error-resilient

wireless video transmission. However, the additional requirements of reduced latency and

the sensitivity of hybrid coded video to errors, has pushed the research into applying even

85

more strong interaction between the network protocol stack and the video application [110].

Therefore, several cross-layer techniques may be employed in order to communicate channel

status to the application, so that the appropriate actions can be taken [2, 29, 27]. Several

wireless content delivery approaches have focused on MAC layer optimizations of the wire-

less link that resides at the last hop of an end-to-end connection [29]. Another important

class of mechanisms for error-resilient video transmission, is based on middleware-based sys-

tems, where a mobile proxy is strategically located at the boundary between the wired and

wireless networks. The proxy server, which is usually located at the base station, handles

ARQ requests and tracks errors. In the case where no error occurs in the wireless link, the

video ARQ proxy server acts like a router that routes incoming packets to the wireless link.

If an error occurs in the wireless link, the proxy will resend locally the packet as soon as

the bandwidth budget allows it. Several of these proxy-based mechanisms can be found in

[13, 10, 110].

On the transport protocol side, a few techniques have been developed mainly for TCP,

and recently for TFRC, in order to improve performance over wireless channels [10, 24, 3,

30, 43]. These methods either hide packet loss caused by wireless channel errors, or provide

an end host the ability to distinguish between packet loss caused by congestion and that

caused by wireless channel errors. For example in [24], the authors develop a method for

differentiating between congestion and wireless induced losses. Another interesting approach

is the UDP-Lite protocol, which is tailored to wireless environments where bit errors take

place [63]. The use of rate control algorithms for wireless channels was shown to be able to

deliver increased throughput with protocols like WTCP [96]. WTCP is rate-based, and uses

only end-to-end mechanisms, performs rate control at the receiver, and uses inter-packet

delays as the primary metric for rate control. Recently the analytical rate control (ARC)

scheme, was proposed for wireless applications that require smooth rate fluctuations [3]. The

important feature of this protocol, is the derivation of analytical model which describes the

TCP throughput. Subsequently, the ability of the wireless receiver to distinguish wireless

packet losses, is used to drive the correct behavior of the rate control algorithm, which

reacts only to congestion events. Another interesting approach can be seen in [30], where

86

the authors propose a rate control scheme called MULTFRC. The basic idea behind this

protocol, is to measure the round trip time, and adjust the number of end-to-end TFRC

connections so that the wireless bandwidth is utilized efficiently.

Apart from the developed techniques that combat wireless errors, an additional challenge

that has to be encountered, is that of handoffs due to mobility. The main mechanism that

was developed in order to resolve the problem of mobility management for IP networks

is Mobile IP [83]. The usual way of handling handoffs is through buffering either at the

base stations [108, 29], or at the mobile client [55]. One system that we are aware of,

and performs media aware handoff in WLANs, is presented at [20, 19]. However, the

proposed system is based heavily on modifications of the media servers, the access network,

and the wireless media clients. It is understandable that an approach like this incurs

significant implementation overhead. On the other hand, the effect of cellular handoffs in

media performance is studied in [66], where the authors propose new bandwidth allocation

schemes to alleviate wireless bandwidth fluctuations. We are only aware of one recent work

that evaluated the performance of a streaming application for the simple case of WLAN to

WLAN handoff [56].

6.3 System Model

This section presents the various aspects of our system model that we used throughout

this chapter. First goal towards a comprehensive performance model, is the definition of

system model that takes into account several parameters that can affect video streaming

performance. We adopt a path model that is able to capture the variety of scenarios and

uses cases that we want to model. Figure 40 presents a high level view of our system model.

The application scenario assumes that there is a unicast end-to-end session with the data

flowing from the correspondent host (CH) to the mobile host (MH). According to a typical

mobility scenario, the MH is initially associated with the first access network (AN1), and at

some time in the future it may move towards AN2. The two access networks are modeled

separately, while they are both attached to the core network (CN) which in general can

be the Internet. One initial assumption that we make, is that while the mobile host is

87

Internet
MH

CH

AN2

AN1

Encoder

buffer

Encoder

TCP/TFRC

sender

Decoder

Playback

buffer

Figure 40: System model for joint transport protocol and video streaming characterization
during handoffs.

connected to AN1, the transport protocol session is in steady state. Subsequently, after

handoff is performed to AN2, the transport protocol will reach the steady state at some

time in the future.

Concerning the core network, it is modeled as a two-state Markov chain, an approach

that has been shown to predict quite well the Internet packet loss behavior [82]. The access

networks are modeled as three-state Markov chains, where the three states are good, bad

and handoff (G = 0, B = 1,H = 2). This implies that the handoff induced packet losses

are distinguished from other packet losses due to wireless errors in the access network. The

duration of the successive good states, {Gi, i = 1, 2, ...} are independent and identically

distributed (i.i.d) with an exponential cumulative distribution function with mean E[Gi] =

TG. The durations of time in the bad wireless state, is denoted by {Bi, i = 1, 2, ...} are

i.i.d with mean E[Bi] = TB, and independent of the {Gi}. The same holds for the handoff

state, {Hi, i = 1, 2, ...}, which is again assumed to be exponentially distributed with mean

E[Hi] = TH . Therefore, the transition probability matrix for the access network will be:

88

MAN =




πGG πGB πGH

πBG πBB πBH

πHG πHB πHH




(87)

Note that the adoption of a different path model will not alter the analytical formulas

developed in this chapter, but it may affect the accuracy of the derived packet loss rate.

Even so, this path model takes into account the two possible cases that may lead the AN to

be in bad state, and these are due to handoff or wireless errors. From this discussion, it is

evident the packet losses are decomposed into many elements according to the reason of the

packet loss. In reality it will be probably difficult to measure and distinguish end-to-end

packet losses according to their origin. Therefore, our objective is to use estimates of the

packet losses in order to derive an approximation of the end-to-end latency.

6.4 Performance Analysis Model

In this section we analyze the decomposed end-to-end path model and estimate all the

crucial parameters that will affect the delivery of a media stream for a specific transport

protocol. Objective of our performance model is the evaluation of the latency for the TCP

or TFRC transport protocols. Since central part in any media communications system is

the use of a playback buffer, we subsequently consider the behavior of the playback buffer

at the mobile client as a function of the end-to-end latency estimate. Finally, we include

in the model the precise effect of mobility protocols on the ultimate performance of the

media delivery system. With this modular approach we successively build a model that

accommodates more and more parameters of the heterogeneous wireless network shown in

figure 39.

6.4.1 Latency

An important concern when developing stochastic models is the validation of the stationarity

assumption [89]. In our case, the stationarity assumption simplifies the calculation of the

random variable that describes the latency, since both the mean and variance of the latency

will have a constant value. We make this assumption for the end-to-end latency so that an

89

Sequence

no.

time
L2 handoff

disruption time

X

RTO

packet lost

packet received

ack received

packet sent

FTT1

BTT1

C: No more acks

received, RTO

starts

FTT2

BTT2

BA

RTT round

E

Figure 41: Packet-level TCP behavior at the sender during IP layer handoff.

analytically tractable model is obtained. So initially, before we calculate the average value

for the latency, we have to estimate the packet loss rate in the end-to-end path.

Wireless packet loss rate (PW): We start by the estimation of the packet loss rate

due to wireless errors in the access networks. We adopt the Gilbert path model for capturing

wireless channel behavior, since it is simple and fairly accurate [8]. Therefore, the average

packet loss rate due to wireless errors will be given by:

PW =
πGB + πHB

πGB + πBG + πHB + πBH
(88)

The transition probabilities are calculated using maximum likelihood estimators [18]: π̂GB =

nGB
nG

, where nGB is the number of times in the ACK messages that B state follows G state,

nBG is the number of times G follows B, and nG is the number of times a good state is

followed by a good. Concerning the calculation of nHB, it can be similarly defined.

Handoff packet loss rate (PH): Figure 58 will be used for explaining the behavior

of TCP during a handoff event. The variables FTT1/BTT1, and FTT2/BTT2 describe the

90

forward and backward trip times for the two access networks respectively. According to

this figure, at time instant tA, layer 2 connection is lost and at time tA+RTO, the TCP

sender retransmits the first lost packet. Now if tB > tC + FTT1, then clearly no duplicate

acknowledgments will be received at the sender, and the only way for TCP to resume the

data flow is by expiration of the RTO of the first lost packet. On the other hand, as the

disruption time X shrinks, and if tB ≤ tC + FTT1 then the probability to receive a number

of the last packets (close to time instant tC) is increased. If this happens, then the sender

would fast retransmit the first lost packet, resulting into a faster recovery. If we rewrite the

previous equation we have (and because tC = tA + BTT1): tB ≤ tC + FTT1 ⇒ X ≤ RTT1.

Therefore, the probability of handoff induced packet loss is the probability of that the

one way latency L, is smaller than the handoff duration X, i.e. PH = P [L < X]. If we

decompose the latency to the two components from which its consists, then the previous

equation is written:

PH = P [LN + Lprotocol < X] (89)

The two variables LN and Lprotocol express the latency induced by the network and the

transport protocol respectively. We define as fLN
the distribution of the end-to-end network

induced latency. On the other hand, the disruption time X is a parameter that depends

of the mobility management a protocol. In general it can have a fixed value for a specific

protocol [114]. In this chapter we assume that is is exponentially distributed with mean TH .

Since there is a need to estimate the end-to-end latency, we will proceed to find it next.

Steady state latency distributions: The distribution of the TCP latency can be in

the general case heavy tailed [22], since the use of the best-effort packet forwarding service,

that the core of the Internet supports cannot provide any delivery guarantees. However, its

precise p.d.f. will depend on the assumptions we make about the packet loss model. Let

now R and Y denote the random variables of the RTT and the RTO respectively. From

figure 58 we can see that when L < X two more cases arise:

Case 1, X > tE − tA: This condition means that the MH will still be in the handoff

91

state, while the RTO expires the first time (time instant tE in figure 58). So if we want to

find the probability that the AN will be in handoff state for time ε after handoff, then this

can be expressed as:

P{S(tE + ε) = G|S(tE) = H} = Pg(ε)

The above holds due to the memoryless property of the distribution of X, causing thus the

channel state at time plus ε, to be independent from the state at tA. Therefore:

Pg(ε) = P{S(ε) = G} =
TG

TH + TG + TH
(1− e−ε/TG) (90)

The term Pg(Y) expresses the probability for the channel to be good state after time Y ,

when the RTO expires. So the average TO duration, for every possible RTO value, will be

equal to the probability that the channel is in good state at that specific RTO (given that

it was bad before) times the value of the RTO. So this value will be:

LTO(Y) =
6∑

i=1

2i−1Y × Pg(iY)
i−1∏

j=0

(1− Pg(jY)) + 64Y Pg(64Y)
6∏

i=0

(1− Pg(iY)) (91)

The product term in the previous equation expresses the probability that the AN was in

handoff state, when the TO expired in the previous time instants before i. In addition,

after the first six consecutive TOs the value of the TO will be fixed to 64Y [99]. The last

term on the above equation captures this effect.

Case 2, X < tE − tA: In this case, we can see from figure 58, that it will also be tC < tE .

This means that the sender will not experience a TO, but instead a TD and so it will fast

retransmit the first missing packet. The average latency introduced due to this event be:

LTD =
∫ TH

t=0
tPg(t)dt (92)

Therefore, the total latency for TCP can be expressed from the previous two equations:

LTCP
H =

∞∑

l=0

P [l < L] =
∫ TH

t=Y
LTO(t)fX(t)dt +

∫ TH

t=0
tPg(t)dt (93)

The first term in the above equation follows from the assumption that the disruption time

due to handoff X, is exponentially distributed with a mean equal to TH and a p.d.f fX(t).

92

Concerning the core network induced delay LN , that occurs mainly due to buffering at

the routing infrastructure, it has been shown that it could be modeled as a shifted Gamma

distribution [25, 64]:

fLN
(t) =





λe−λt(λt)ν−1

(ν−1)! if t ≥ 0

0 if t < 0
(94)

We will follow this latency distribution in this chapter also so that the derivation of an

analytical closed form solution is possible. Several possible analyses can be preformed in

order to model more accurate the core network performance, but this research is out of the

scope of this dissertation.

6.4.2 Joint Latency and Playback Buffer Model

The expected delay of packets due to handoff is expressed as LH , while the probability for a

packet to miss its deadline is PH . These two quantities are primarily related to the handoff

disruption time X. The important point that we should stress here, is that the packets that

were delayed due to handoff and missed the playback deadline, are the packets that were

temporarily buffered at the old access network. In that case PH ' 0, since the purpose of

the forwarding buffer is to eliminate handoff packet losses. Nevertheless, buffering cannot

help if the disruption time X is long, resulting into the delivery of useless packets to the

media application. Therefore, the probability for a packet to be delayed, excluding the case

of handoff, can be formulated as:

PD = P [sent time + latency +
buffer occupancy

playback rate
≤ deadline]

PD = P [ts + LN + Lprotocol +
b1

c1
≤ td] (95)

where ts is the time that a video unit was sent, while td is the playback deadline for this unit.

For TCP and TFRC this expression will be different. TFRC does not introduce any latency

since it does not control retransmissions and so LTFRC = 0. In the case of TCP, LTCP will

be the latency incurred by the TCP retransmission mechanisms, due to the packet loss rate

PN in the core network. Therefore equation 115 will be:

93

P TCP
D = P [ts + LN + PNLTCP +

b1

c1
≤ td]

P TFRC
D = P [ts + LN +

b1

c1
≤ td] (96)

Now the probability for a packet to be delayed plus the case of handoff, and when the

playback buffer is considered, can be written based on the previous equation:

P TCP
DH = (1− P TCP

D)P [ts + LN + PHLTCP
H +

b1

c1
≤ td]

P TFRC
DH = (1− P TFRC

D)P [ts + LN + PHLTFRC
H +

b1

c1
≤ td] (97)

These values will later help us quantify the model performance in terms of correct deadline

estimation at the sender. By elaborating on the previous formulas we can write for TCP:

P TCP
D = P [LN + PNLTCP ≤ a] =

∫ +∞

−∞
FLN

(a− y)fLTCP (y)dy (98)

with a = td − ts − b1
c1

. And so for PDH we finally have:

P TCP
DH = (1− P TCP

D)P [LN + PHLTCP
H ≤ a]

= P TCP
D [LN + PHLTCP

H ≤ a]
∫ +∞

−∞
FLN

(a− LH − y)fLTCP
H

(y)dy (99)

The distributions in these formulas are simple sums of exponential values, making thus the

derivation of a final solution straightforward.

6.4.3 Effect of Mobility Protocols

A novel aspect of our streaming system, is the consideration of handoff between asymmetric

wireless access networks, as we showed earlier in figure 39.

Forwarding buffer packet loss rate (PBU) and latency (LBU): As a first step

we would like to account for the case where the mobility management protocol employs a

forwarding buffer at the old AN for salvaging in-flight packets. The effect that the buffering

mechanism will have, is that several packets will not be lost, but a prolonged handoff may

94

render them useless since they might miss the playback deadline. Note that another type

of non real-time traffic would not suffer from this side-effect.

If we assume that the server where the buffering is performed, is modeled as an M/M/1/K

queue [16], with finite capacity K and average load ρ, then the packet loss probability due

to handoff has to be recalculated. The packet loss probability in this case is equal to the

conditional probability that a packet arrives faster in the access network, given that the

buffer is full:

PBU = (1− PDH)P [LN + Lprotocol < X|S = K] (100)

By elaborating on the previous equation it will give:

PBU = (1− PDH)P [LN + Lprotocol < X]fS(K)

= (1− PDH)fS(K)
∫ +∞

−∞
FLpr(y)fX(y)dy

= (1− PDH)fS(K)
∫ +∞

−∞
fX(y)[

∫ +∞

−∞
FLprotocol

(y − z)fLN
(z)dz]dy (101)

In the previous equation, fS is the c.d.f. of the random variable S that describes the

forwarding buffer occupancy. So equation 101, describes in a parametric form, the packet

loss probability directly attributed to handoff. Concerning the average latency due to the

forwarding buffer, it will be equal to the average time a packet will spend in the forwarding

buffer [89]:

LBU =
1

P [S = K]
ρ(1 + KρK+1 − (K + 1)ρK)

(1− ρ)(1− ρK+1)
(102)

and by using equations 93 and 102 the total latency is equal to:

LTBU = LBU + LH (103)

In the previous equation, one more value that can be added is the one that captures the

delay that a specific mobility management protocol introduces. We calculate this value for

mobile IP, hierarchical mobile IP, and mobile IP with route optimization in appendix B.

95

Optimal playback rate and buffer size: Based on the derived equations, we can define

the optimal playback rate c1 given the current playback buffer occupancy b1. In order for

the playback buffer not to underflow the following condition must then hold for TCP:

b1

c1
> bmin(TH , LDH/LTBU)

RTT
cRTT (104)

6.5 Protocol for Unicast Media Streaming in Heterogeneous
Networks

After developing an analytical model that characterizes the performance of TCP and TFRC

in heterogeneous wireless scenarios, we have to analyze how the developed model can be

utilized in order to drive the behavior of a media streaming protocol. In general, the

following functions can be part of a streaming protocol: rate estimation, error control,

feedback, packet scheduling, playback. For TCP, the first three functions are part of the

protocol specification, while the last two may change and be implemented by the application.

For TFRC only the rate estimation algorithm is part of the protocol specification. Now,

the proposed heterogeneous wireless network streaming protocol (HWNSP) control packet

scheduling and playback. The protocol defines a set of functions that roughly distinguish

the operation into two phases, namely initialization and steady phase. Initial objective of

the protocol is to identify the state of the end-to-end path, which can be good, bad, or

handoff. Subsequently the protocol proceeds with the estimation of several parameters that

are related with the state of the channel. The previously developed analytical model helps

with the estimation of the necessary parameters, so that the aforementioned decisions can

be made efficiently. The detailed protocol operation both at the client and the server is

discussed next.

Client operation: The algorithm that the client executes throughout the streaming

session, can be seen in figure 42. During initialization, the client requests from the server a

media file, and also informs the server about the desired playback rate c1, and initial pre-roll

delay ∆. This operation can be performed with either the SIP or the RTSP protocols [93].

During the steady phase, the algorithm initially updates the estimate of the forwarding

96

initialize()
1: initialize c1,∆
2: send msg(server, clip name,∆, c1)

steady phase()
1: K ← cwnd, c1 ← // equation 104
2: L̂CN ← // equation 114
3: if HANDOFF then
4: T̂h ← (handoff [types] → delay)
5: P̂H ← // equation 109
6: L̂TBU ← // equation 103
7: P̂W ← // equation 108
8: c1 ← // equation 104
9: send msg(server, T̂H , P̂H , P̂W)

10: end if
11: if BAD WIRELESS then
12: π̂GB = nGB

nG
...

13: P̂W ← // equation 108
14: c1 ← // drop playback rate, equation 104
15: send msg(server, P̂W , c1) // according to the TCP or TFRC allowed rate
16: end if

Figure 42: Protocol operation at the client.

buffer capacity (line 1), and in addition configures the playback rate if the network latency

L̂N changes. The client can be informed for a handoff decision from the lower protocol layers

(L2/L3). When this happens, the client enters handoff state, and immediately calculates

the necessary model parameters (lines 5-8) namely T̂H , P̂H , and L̂TBU . By estimating this

values, the client knows the effect that this handoff will have on the ability of the TCP

protocol to deliver packets. Therefore it sets the playback rate appropriately as line 10

indicates, according to equation 104. When the connection with the new link has been

established, the client can inform the server about the reason of the disruption (line 11).

Server operation: The server operation can be seen in figure 43. The protocol opera-

tion at the server is also distinguished into the same two phases. During initialization, the

server sets the estimated forwarding buffer size K of the AN to be equal to the bandwidth

delay product (congestion window) of the first path. It also sets the value of the esti-

mated disruption due to handoff (X) equal to zero, and the average load of the server that

performs forwarding to 0.8. During steady phase, the server continuously updates several

97

initialize()
1: ρ ← 0.8, T̃H ← 0
2: K ← cwnd

steady phase()
1: K ← cwnd // update estimates
2: calculate Gamma distribution parameters
3: L̃CN ← // equation 114
4: rtp packetize(V DU)
5: send(V DU)
6: detect handoff()
7: if HANDOFF then
8: // Server detected handoff
9: P̃HB ← f(C, PH) // equation 101

10: L̃HB ← f(C, PH) + T̃H // equation 102
11: // TCP should not reduce cwnd
12: c̃1 ← // equation 104
13: D̃ ← // calculate distortion if real-time streaming
14: schedule(send buffer, D̃, L̃HB, c̃1)
15: end if
16: if BAD WIRELESS then
17: π̃GB = nGB

nG
... // estimate transition probabilities

18: P̂W ← // equation 108
19: c̃1 ← // drop playback rate equation 104
20: send msg(server, P̃W , c̃1) // according to the TCP or TFRC allowed rate
21: end if
detect handoff()
1: correlation test(RTTcurrent, RTOcurrent, T̃H , L̃N , L̃HB)

Figure 43: Protocol operation at the server.

parameter estimates while streaming to the mobile client. These are the estimates for K,

and the expected network latency L̃N . The Gamma distribution parameters are defined in

equation 114. The interesting part of the server operation arises in case of a handoff. In

this case the server is also estimating L̃HB, and subsequently estimates the client playback

rate c1 as c̃1. This is an important function of the protocol, since the server is able to

approximate the rate at which data are removed from the playback buffer at the mobile

client. As a next step, the server schedules new packets at a lower rate in order to minimize

the expected number of dropped packets because of the handoff.

Client-oriented protocol: Even though the server-oriented version of the protocol

might assure a near-optimal packet scheduling, it might not be always possible to upgrade

98

Table 3: Vertical handoff latencies between heterogeneous wireless networks.

Handoff type Latency (sec)
WLAN⇒GPRS [42] 1.67
GPRS⇒WLAN [42] 1.281
WLAN⇒CDMA2000 [81] 1.01
CDMA2000⇒WLAN [81] 0.6
WLAN⇒UMTS [107] 1.3
UMTS⇒WLAN [107] 0.7

the server with the proposed protocol since it might not scale as the number of clients is

increased. Therefore, a version of the protocol that operates only at the client will consist

of the set of operations defined in the algorithm in figure 42. The only difference is that the

client need not to inform the server for the local parameter estimates. Experimental results

that depict the relative merits of each approach will be given in a later section.

Handoff latencies: Table 3 provides a summary of the values that can be used by the

proposed protocol, when handoff between a heterogeneous networks takes place. Clearly

these values depend on the infrastructure used, network configuration etc [42, 81]. However,

they provide good typical estimates concerning a specific network’s handoff latency. The

total handoff latency is the sum of all individual latencies which include the latencies for

link-layer handoff, movement detection, and registration.

6.5.1 Experiments

The network testbed for our experiments consists of a client/server configuration that are

linux boxes while the middlebox is freeBSD machine that acts as a router. We used the

middlebox with the Dummynet software [36], for emulating the packet losses due to wireless

errors, handoffs between access networks, and buffer overflows in the core network routers.

The sequences FOREMAN, AKIYO, and COASTGURAD [94], were used for the video

streaming experiments. The H.263 encoder [44] was used for encoding the YUV sequences

into various bitrates. The video units were packetized into RTP packets and the sent to the

transport protocol which is our case were TCP and UDP/TFRC. Due to the short duration

of the sequences (150 frames), they were repeatedly fed as input to the encoder, so that

99

encoded sequences of longer duration could be obtained. The capacity of the bottleneck link

between the two routers was set to 250Kbps. All the sequences were encoded at 128Kbps

with a target frame rate of 15 fps. The results were obtained by running the same scenario

100 times and averaging the PSNR values of the same experiments. A summary of all the

parameters used throughout our experiments in this section, can be seen in table 4.

Table 4: Model parameters used for the video streaming experiments.

Network Parameters Protocol parameters
AN : TH (WLAN) 50 ms T0 200 ms
AN : TG (WLAN) 1000 ms Wmax 6 MByte
AN : TB (WLAN) 100 ms W0 1 segment
CN : TG 1000 ms MSS 1460 bytes
CN : TB 5 ms Mobile speed 1-20 m/s

 0.0001

 0.001

 0.01

 0.1

 1

 100 200 300 400 500 600 700 800 900 1000

B
u

ff
e
r

u
n
d

e
rf

lo
w

 r
a

te
 (

1
/s

e
c
)

Average disruption time TH (msec)

Adaptive playback [Ka01]

Proposed streaming protocol

Proposed streaming protocol plus server

(a) TCP

 0.0001

 0.001

 0.01

 0.1

 1

 100 200 300 400 500 600 700 800 900 1000

B
u

ff
e
r

u
n
d

e
rf

lo
w

 r
a

te
 (

1
/s

e
c
)

Average disruption time TH (msec)

Adaptive playback [Ka01]

Proposed streaming protocol

Proposed streaming protocol plus server

(b) TFRC

Figure 44: Buffer underflow rate for WLAN→WLAN handoff.

In the first experiment, we evaluated the effect of the handoffs on performance of the

playback buffer. In figure 44, the x-axis depicts the average value for the handoff duration

(TH), and in the y-axis the normalized buffer underflow rate. We compare our approach,

with a playback adaptation strategy reported at [54], and we also set the playback buffer

size to 200 packets. Results for TCP can be seen in figure 44(a), and demonstrate that

the proposed playback adaptation strategy can lead to a lower number of buffer underflow

events when compared to currently employed wireless playback adaptation algorithms [55].

100

It is interesting to note that when the handoff has small duration, the version of the protocol

where the server is also active, does not correspond to large benefits. However, when the

handoff duration is increased the mobile client cannot make good estimates concerning

the optimal playback rate. Results for TFRC are shown in figure 44(b). The proposed

buffer adaptation for TFRC is proven more essential than initially expected, due to TFRC’s

reluctance to decrease fast the output data rate. This behavior results into a higher number

of buffer underflow events for the TFRC protocol. However, when HWNSP is added to the

system, the protocol commits to TFRC smaller number of packets without following TFRC’s

indicated allowed rate, leading thus to a reduced number of buffer underflow events.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 50 100 150 200 250 300 350 400 450 500 550

P
e

rc
e

n
ta

g
e

 o
f
d

ro
p
p

e
d

 f
ra

m
e
s

Average disruption time TH (msec)

Proposed protocol

Non-adaptive server

(a) TCP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 50 100 150 200 250 300 350 400 450 500 550

P
e

rc
e

n
ta

g
e

 o
f
d

ro
p
p

e
d

 f
ra

m
e
s

Average disruption time TH (msec)

Proposed protocol

Non-adaptive server

(b) TFRC

Figure 45: Video quality expressed though the percentage of the dropped frames at the
server.

The next set of experiments evaluates the actual video quality at the mobile client. The

two metrics that we considered for this set of the experiments, is the number of dropped

frames at the server, and of course the actual PSNR of the video sequence due to the

handoffs experienced at the mobile client. Figures 45(a,b) depict the number of dropped

frames at the server during a handoff event for TCP and TFRC respectively. The operation

of the proposed protocol at the server essentially adapts to the changing network conditions

by estimating the expected disruption time T̃H at the mobile client. By doing so, the server

reduces the output rate, and so several frames are not sent from the server for the estimated

duration of the disruption, resulting thus into the frame drop events at the server. However,

101

 18

 20

 22

 24

 26

 28

 30

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
S

N
R

 (
d
B

)

Channel packet loss probability

Proposed streaming protocol

Adaptation according to [St04]

Proposed streaming protocol, TH=600ms

Adaptation according to [St04], TH=600ms

(a) PSNR for TCP transport, as a function of the core
network packet loss (PC) and PW =0.001

 18

 20

 22

 24

 26

 28

 30

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
S

N
R

 (
d
B

)

Channel packet loss probability

Proposed streaming protocol, TH=300ms

Adaptation according to [St04], TH=300ms

Proposed streaming protocol, TH=600ms

Adaptation according to [St04], TH=600ms

(b) PSNR for TFRC transport, as a function of the
wireless packet (PW) and PC=0.001

Figure 46: Video quality expressed though the PSNR at the mobile client.

a typical solution like the one reported at [56], where no estimates of the precise disruption

time are made, result into even more lost frames. The same situation can be observed when

UDP/TFRC is used for transport in figure 45(b). The difference is that baseline TFRC will

experience more dropped frames, while the addition of the proposed protocol reduces the

output rate, leading to a lower number of dropped frames.

At the core of our performance evaluation, are the experiments that stress test the het-

erogeneous path model, and essentially, the effect of heterogonous packet losses. Results for

peak signal-to-noise ratio (PSNR) are depicted in figure 46. More specifically, in figure 46(a)

we show the effects for a fixed wireless packet loss rate of PW = 0.001, and varying packet

loss on the core network PN . We compare out protocol with the wireless video adaptation

strategy developed at [102], where the authors of that study consider only wireless errors.

The expected advantage of the proposed protocol, is that adaptation is performed at a finer

granularity since the behavior of the protocol should be different when handoff takes place

compared to the case of random wireless errors.

Figure 47, presents results for an experiment that tests an important part of the pro-

posed protocol functionality. This is the rate of client feedback to the server, and its effect

on the accuracy on the parameter estimation process. Generally, the guideline for streaming

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 e
rr

o
r

(%
)

Normalized feedback rate (1/sec)

Handoff duration TH

Playback rate c1

Handoff packet loss PHB

Latency LH

(a) Error estimate ê, for several protocol parameters
as a function of feedback rate

 0.0001

 0.001

 0.01

 0.1

 1

 100 200 300 400 500 600 700 800 900 1000

B
u

ff
e

r
u

n
d

e
rf

lo
w

 r
a

te
 (

1
/s

e
c
)

Average disruption time TH (msec)

Feedback 1%

Feedback 3%

Feedback 5%

(b) Buffer underflow rate as a function of the feed-
back rate

Figure 47: Effect of the client feedback rate.

sessions indicates that the rate of feedback should not exceed 5% of the total bandwidth con-

sumed in a streaming session [110]. We followed this rule for our experiments. Figure 47(a)

depicts this effect of the feedback rate on the on the parameter estimation process at the

server. We can see that the estimates diverge significantly from the actual values, when

the feedback rate is low. It is interesting to note in this figure that the effect of feedback

is different to different parameters. For example the handoff disruption estimate T̃H , and

the end-to-end latency L̃H , are not affected since their value does not vary significantly.

After a specific threshold of feedback rate is reached, the server is able to make very good

estimates for these two parameters. However, the value of the optimal client playback rate

c̃1, is more difficult to be predicted correctly.

Now in figure 47(b), we demonstrate the effect of the feedback rate to the actual sys-

tem performance in terms of the playback underflow rate. The increase in the feedback

rate contributes to the better estimation of the needed parameters, and consequently the

observed number of buffer underflow events is lower.

6.6 Proactive Soft-Handoff of Media Flows

In this section we will show that the use of an end-to-end handoff management protocol,

can improve bandwidth utililization and reduce jitter for media flows, when handoff takes

place. The proposed handoff management protocol is general enough in the sense that it

103

operates over generalized connectionless IP-based networks (Internet). It is implemented

as part of SCTP, which supports multihoming and allows thus the existence of transport

layer sessions that utilize multiple IP addresses. The set of functions that performed by

the protocol during handoffs, are implemented at the end points, so that a completely

decentralizes solutions is obtained.

6.6.1 Handoff Algorithm

When a mobile host enters a new foreign network or subnet, it must obtain a valid IP address

from the visited network (e.g. via DHCP [35] or IPv6 auto-configuration) which is called

Care-of-Address (CoA) 1. This operation is performed regardless of underlying mobility

management protocol. After a valid IP address is obtained, the algorithm in figure 48 is

executed. Note that when the proposed protocol is implemented on top of STCP without

the use of Mobile IP, the SCTP sender sends an address configuration (ASCONF) message

to the server requesting from it to add the new address to the association. If TCP was used

the connection would break requiring thus the establishment of a new connection. Now

after the CH adds the new address to the session, it starts using it immediately, assuming

thus that the mobile host is reachable through this new address. In the meantime the

media streaming protocol that we presented in the previous section (HWNSP), can star

the estimation process after the soft handoff has finished. The advantage for the streaming

session is that due to the soft-handoff nature of the protocol, disruption time is minimized,

and a the adaptation of the streaming session to the new link is faster.

The binding update procedure is separated in two parts – A binding update that corre-

sponds to the updates sent to the CH during handoffs, and a periodic binding update that

is sent directly to the HA (line 9). The second part corresponds to a periodic update that

has limited relationship with the updates due to host movement. This means that there will

be cases where a MH has moved to a new location, and has a new IP address, but binding

update need not take place, even though Mobile IP would require it. We allow a level of

”staleness” in the current location of the mobile host so that signaling traffic is reduced.

1Note that we are not concerned with the initial authorization process that the MH has to undergo.

104

soft media handoff()
1: loop
2: if new AP then
3: dhcp MH : request()
4: sctp MH : add IP ()
5: end if
6: sctp MH : send(CH,ASCONF)
7: hwnsp MH : send msg(CH, params) //proactive operation
8: end loop
9: mobileip MH : send bu(HA, IP)

Figure 48: The SCTP-based cross-layer media session handoff (MSH) algorithm.

However, when we allow a lag in the notification of the HA we must make sure binding

updates sent to the CH, are delivered as soon as possible. These updates may happen while

there is an ongoing data flow, and in some cases they can be done pro-actively.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Packets send
Packets droped

(a) Packet sequence numbers for TFRC

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Packets send
Packets droped

(b) Packet sequence numbers for MSH-SCTP

Figure 49: Vertical handoff from GPRS to UMTS link.

6.6.2 Simulations

A relatively different network setup was used for evaluating the performance of MSH-SCTP

protocol in heterogeneous wireless networks. We used the ns-2 simulator [77] to evaluate

the performance of the handoff algorithm under different transport protocols. According

to the simulation scenario, handoff is performed at the 30th second from between two

heterogeneous links. These links can be WLAN, GPRS, or UMTS. Link buffer size is setup

to be 7 packets for GPRS and 20 packets for UMTS, the propagation delays 300 and 150

105

ms respectively, while the bitrates are 30Kbps for GPRS and 384Kbps for UMTS [42]. For

a WLAN 802.11b network, the same parameters were set to 20 packets, 10 ms, and 6 Mbps

respectively.

Figure 49 presents sequence numbers for the case of a vertical handoff from a GPRS

to a UMTS links with TFRC, and MSH-SCTP. The MSH-SCTP protocol does not require

any explicit handoff notification as recent solution for TFRC has employed [42]. The AIMD

congestion control algorithm used by SCTP, adapts faster to the new link conditions as

handoff from a GPRS link to a UMTS link takes place, and converges faster to the link

bandwidth. Bandwidth utilization is increased especially during the critical time frame

where the handoff takes place.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Packets send
Packets droped

(a) Packet sequence numbers for TFRC

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Packets send
Packets droped

(b) Packet sequence numbers for MSH-SCTP

Figure 50: Vertical handoff from UMTS to GPRS link.

Now in figure 50, we present similar results but for a handoff from a fast UMTS link to a

slower GPRS network. The situation in this case is different since TFRC cannot adapt fast

to the new link resulting into a increased number of losses (figure 50(a)). However, when a

window-based AIMD congestion control algorithm is employed, a reduced number of losses

is observed during handoff, since the algorithm adapts fast to the new link and reduces

the output rate very fast. A bunch of losses cause MSH-SCTP to reduce its rate sooner

than TFRC. Now when a forwarding buffer is used during handoff, then TFRC can perform

better since is can eliminate several packet losses (figure 51(a)). However, the adaptation to

the new link still remains slow, due to the inherent behavior of the TFRC rate estimation

106

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Packets send (UMTS)
Packets droped (UMTS)

Packets send (GPRS)
Packets droped (GPRS)

(a) Packet sequence numbers for TFRC

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Packets send (UMTS)
Packets droped (UMTS)

Packets send (GPRS)
Packets droped (GPRS)

(b) Packet sequence numbers for MSH-SCTP

Figure 51: Vertical handoff from UMTS to GPRS link with a forwarding buffer.

algorithm. When the MSH-SCTP protocol is used, we can see in figure 51(b) that packet

losses are also eliminated and throughput is not throttled back. In this case we have the

best combination for media flows where both packet losses are eliminated and fast rate

adaptation is achieved.

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60

J
it
te

r
(s

e
c
)

Time (sec)

(a) TFRC

0

0.02

0.04

0.06

0.08

0.1

0 2000 4000 6000 8000 10000 12000 14000

J
it
te

r
(s

e
c
)

Sequence number

(b) MSH-SCTP

Figure 52: Jitter for handoff experiment with CBR flows from a UMTS to WLAN link.

We also evaluated the performance of MSH-SCTP during handoffs in terms of the experi-

enced jitter, since the TFRC protocol has as its primary objective stable jitter so that media

flows can be efficiently supported. Figure 52 presents results for a UMTS to WLAN handoff

experiment. Even though TFRC suffers generally from less jitter, the adaptation to the new

link is slow (figure 52(b)). However, for SCTP during handoff the jitter instantaneously

107

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1000 2000 3000 4000 5000 6000

J
it
te

r
(s

e
c
)

Sequence number

(a) UMTS to GPRS handoff with TFRC

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

J
it
te

r
(s

e
c
)

Time (sec)

(b) WLAN to UMTS handoff with MSH-SCTP

Figure 53: Jitter for handoff experiment with CBR flows.

increases and drops fast when connection with the new link is achieved (figure 52(a)). Now,

in figure 53(a) we present results for instantaneous jitter for a UMTS to GPRS handoff with

the TFRC protocol. In this figure we see that TFRC can achieve pretty stable jitter despite

the initial instability. For SCTP however, when a handoff happens from a fast WLAN to

a slower UMTS, the protocol suffers from significant jitter for quite some time after the

handoff instant.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

Ji
tte

r
(m

s)

Time (sec)

One SCTP flow

(a) AIMD part of the hybrid algorithm

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70

J
it
te

r
(m

s
)

Time (sec)

One TFRC/UDP flow

(b) TFRC part of the hybrid algorithm

Figure 54: Jitter for one SCTP/VoIP flow in the 802.11b WLAN.

Figure 54 depicts the jitter when a single flow with combo-workload exists in the WLAN

(as derived in chapter 3). More specifically, figure 54(a) shows the global behavior of the

AIMD algorithm, while figure 54(b) depicts jitter of the CBR part of the flow. Figure 55

108

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

Ji
tte

r
(m

s)

Time (sec)

One SCTP flow
One SCTP and two TCP-SACK flows

(a) AIMD part of the hybrid algorithm

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70

J
it
te

r
(m

s
)

Time (sec)

One TFRC/UDP and one TCP-SACK flow

(b) TFRC part of the hybrid algorithm

Figure 55: Jitter for one SCTP/VoIP and 3 TCP flows in the 802.11b WLAN.

depicts results for the experienced jitter when three additional TCP flows exist in the

WLAN. These results also verify that the TFRC microflow can maintain a stable jitter

since it can use packet slots from the globally available AIMD window. Or in other words,

it is utilizing the AIMD algorithm to probe for the wireless bandwidth and then the TFRC

flow can commit the outgoing packets at a more stable rate.

6.7 Conclusions

In this chapter we developed an analytical-driven video streaming protocol, suitable for

heterogeneous wireless networks where both handoffs and wireless errors are possible. Sub-

sequently, we used our comprehensive model the development of protocol for managing

an end-to-end video streaming session in a heterogeneous wireless environment. The pro-

posed protocol, can be easily implemented on top of the aforementioned transport protocols.

Performance evaluation revealed the protocol’s ability to maintain low playback buffer un-

derflow rate.

In the second part of this chapter we proposed a new media handoff protocol, which

when it is combined with the previously developed streaming protocol can assure the best

possible QoS for a media streaming session. With the development of this complete protocol

suite, we demonstrate that the use of analytical, closed-form models that capture the effect

of heterogeneous wireless networks, can be utilized by a practical cross-layer protocol that

109

controls the unicast streaming session. We prove with extensive experimental and simulation

results that smooth media handoff can significantly improve performance by maintaining a

more constant output rate.

110

CHAPTER VII

MULTIPATH TRANSPORT PROTOCOL MODELS FOR

WIRELESS VIDEO STREAMING

In this chapter we are concerned with the use of TCP for multipath video streaming in

wireless mobile networks. Our objective is to demonstrate that the use of analytical perfor-

mance models for a hybrid wireless/wired network, can be used for driving the behavior of

a multipath video streaming protocol so that the delivered video quality is improved. To

achieve this objective, we initially develop a stochastic closed-form latency model that cap-

tures the behavior of TCP when multipath transport is considered. Based on the developed

model, we devise a set algorithms for optimizing wireless video streaming. More specif-

ically, we initially present an adaptive playback adaptation algorithm that operates only

at the client without intervention of the streaming server. The second algorithm controls

multipath scheduling of video packets, and can operate on top of any multipath transport

protocol. Main task of this algorithm, is the estimation of expected latencies of video pack-

ets, and the proper allocation to the outgoing paths based on the playback deadlines at

the client. Finally, we introduce the idea of multipath ARQ, and a new algorithm, that

intelligently decides the allocation of video packet retransmissions to the available paths.

7.1 Introduction

Mobile wireless devices today are capable of using multiple wireless access technologies

like WLAN, 3G cellular, or MAN (e.g. WiMax). Exploiting the full potential of these

access networks, is of paramount importance when always on, high QoS services have to be

provided to mobile users. Especially for media applications like pre-recorded or live video

streaming, the use of multiple interfaces might prove crucial for meeting the goals of high

throughput, minimized latency, low jitter, and service continuity in the next generation

heterogeneous wireless networks.

111

In these networks, the highly popular TCP/IP Internet protocol suite will have to be

used [38]. Of course, it is well known that TCP is considered unsuitable for video streaming

applications. The main reasons are the rapid throughput fluctuations and the reliability

mechanism which incurs additional delays [110]. Therefore, it is generally believed that the

transport protocol of choice for video streaming should be UDP, on top of which several

application specific mechanisms can be built [110]. However, the absence of congestion

control from UDP can cause performance deterioration for TCP-based applications if wide-

scale deployment takes place in the Internet [104, 52]. In addition, several commercial media

applications like Quicktime [85], Windows Media [111], and Real Media [87], are already

using TCP for video streaming, and haven proven the viability of such a solution.

RTP
de-packetizer

TCP socket

TCP socket

.

.

Stream
reassembly

Wireless
interface

Wireless
interface

Internet

Streaming
server

Video decoder

Client parameter
estimator

Server parameter
estimator

Figure 56: The proposed multipath streaming architecture based on TCP.

Therefore, in this chapter we will also assume the use of the popular TCP protocol,

and we will explore how it can be used for a video streaming application, when multiple

paths can be used concurrently. Figure 56 depicts a high level view of the proposed media

streaming model based on TCP. The crucial difference of our work when compared with

112

the bulk of multipath streaming mechanisms, lies in the development of analytical mod-

els that capture the behavior of TCP. We follow this approach so that we can exploit the

understanding of the protocol behavior and optimize video streaming. Based on the de-

veloped models, we study the performance of multipath streaming, when a transport layer

protocol is controlling the packet path diversity process. We initially develop a client-driven

playback adaptation algorithm, that estimates the expected latencies of video packets, and

regulates the playback rate accordingly. Subsequently, we present a multipath scheduling

algorithm, which is again analytically-driven and works in conjunction with the multipath

transport models that we developed. Another novel idea that is introduced in this paper,

is that of multipath retransmission, which means that the sender intelligently decides the

retransmission allocation to available paths, based on the latency estimates for each path.

7.2 Related Work

The last few years a considerable amount of works in the area of multipath video streaming

have been presented [7, 65, 105, 57]. The majority of them are based on the use of multiple

description coding (MDC) techniques. Multiple description coders produce a number of

self-contained encoded descriptions for a video sequence with lower quality than the single

description equivalent of the initial sequence. Even if one description is received, the ap-

plication will be able to reproduce the video sequence at a lower quality. However, as the

number of the descriptions received at the decoder is increased, the display quality is im-

proved [40]. One disadvantage is that the bitrate used for MDC is higher for achieving the

same quality single layered compressed video [40]. When it comes to the network aspect, all

the approaches for multipath streaming of MDC video, make assumptions about path de-

pendence and the existence of network overlay infrastructures. Novel though, these systems

are far from being employed over the current Internet [38]. In another work reported at [57],

the authors compare multipath video streaming approaches at the application, transport

and network layers without delving into the detailed algorithms of the protocols and their

interactions. In a more recent works [25, 65], we see typical systems for multipath stream-

ing of pre-encoded MDC video, where two paths are used for increased error resilience.

113

Finally, in [98] the authors proposed a system for multipath video streaming with TCP,

but the existence of multiple paths is only exploited on the reverse path by duplicating

acknowledgments.

7.3 TCP Latency Model for Multiple Asymmetric Paths

In this section we analyze the decomposed end-to-end path model, and explain the procedure

we used for estimating all the crucial parameters that affect the delivery of a media stream

for a specific transport protocol. Objective of the performance model, is the evaluation of

the latency for the TCP or TFRC transport protocols. Subsequently, we incorporate into

the end-to-end latency model the behavior of the playback buffer at the mobile client, since

it is a central part in any media communications system. With this modular approach, we

successively build a model that accommodates more and more parameters.

Figure 57 depicts the channel model where the transport protocol is using simultaneously

N = 2 paths, while each path consists of a number of links. The wireless access network

(AN) is modeled as a two-state Markov chain, and can be at any moment in one of two

states, namely good (G), or bad wireless (W). Concerning the core networks (CN), they

are modeled by using the Bernoulli path model, which means that two states exist, namely

good (U) and bad (B). Therefore the aggregate packet loss probability for each path will

depend on whether at least one channel is in bad state:

P = P (W,B) + P (G,B) + P (W,U) = 1− P (G,U) (105)

Obviously the same will hold for any additional path. Now, the transition probability

matrices for each of these networks will be:

MAN =




πGG πGW

πWG πWW


 (106)

MCN =




πUU πUB

πBU πBB


 (107)

114

A key component for the development of a stochastic model, is the definition of the

random variables of the problem, and their correlation. We consider that the round-trip

times (RTT) of all the paths are i.i.d. random variables that are independent of the size of

the congestion window [80]. Another assumption that we make is that since the losses do not

originate from congestion at the same bottleneck, their respective RTTs are independent.

C1

MH CH

AN2

AN1

C2

Figure 57: Channel model with multiple access and core networks.

7.3.1 Latency Model

An important concern when developing stochastic models is the validation of the stationarity

assumption [89]. In our case, the stationarity assumption simplifies the calculation of the

random variable that describes the latency, since both the mean and variance will have

a constant value. We make this assumption, so that an analytically tractable model is

obtained. Now the first step before we calculate the average value for the latency, is to

estimate the packet loss rate in the end-to-end path.

Wireless packet loss rate (PW): We start by the estimation of the packet loss rate

due to wireless errors in the access networks. We adopt the Gilbert path model for capturing

wireless channel behavior, since it is simple and fairly accurate [8]. Therefore, the packet

loss probability due to wireless errors will be given by:

115

πW =
πGW

πGW + πWG
(108)

The transition probabilities are calculated using maximum likelihood estimators [18]: π̂GW =

nGW
nG

, where nGW is the number of times in the ACK messages that W state follows G state,

nWG is the number of times G follows W, and nG is the number of times a good state is

followed by a good. In a practical application if we want to find whether the wireless channel

is in the bad wireless state, the mobile host can obtain it from the MAC layer.

Sequence
no.

time
Duration of
bad wireless
state X

RTO

packet lost

packet received

ack received

packet sent

FTT1

BTT1

C: No more acks
received, RTO
starts

FTT2

BTT2

BA

RTT round

E

Figure 58: Packet-level TCP behavior at the sender during IP layer handoff.

Figure 58 will be used for explaining the behavior of TCP during a bad wireless state

that lasts X seconds. The variables FTT1/BTT1, and FTT2/BTT2 describe the forward

and backward trip times for the two access networks respectively. As we can see from

this figure, at time instant tA, layer 2 connection is lost and at time tA+RTO, the TCP

sender retransmits the first lost packet. Now if tB > tC + FTT1, then clearly no duplicate

116

acknowledgments will be received at the sender, and the only way for TCP to resume the

data flow is by expiration of the RTO of the first lost packet. On the other hand, as X

shrinks, and if tB ≤ tC + FTT1 then the probability to receive a number of the last packets

(close to time instant tC) is increased. If this happens, then the sender would fast retransmit

the first lost packet, resulting into a faster recovery. If we rewrite the previous equation

we have (and because tC = tA + BTT1): tB ≤ tC + FTT1 ⇒ X ≤ RTT1. Therefore, the

packet loss probability, is the probability of that the one way latency L, is smaller than the

duration X, i.e. PW = P [L < X]. If we decompose the latency to the two components from

which it consists, then the previous equation is written:

PW = P [LN + Lprotocol < X] (109)

The two variables LN and Lprotocol express the latency induced by the network and the

transport protocol respectively. We define as fLN
the distribution of the end-to-end network

induced latency. The value for X, is a parameter that depends on the wireless channel. In

this paper, we assume that this random variable is exponentially distributed with mean TH .

Since there is a need to estimate the end-to-end latency, we will proceed to find it next.

Steady state latency distributions: The distribution of the TCP latency can be in

the general case heavy tailed [22], since the use of the best-effort packet forwarding service

that the core of the Internet supports, cannot provide any delivery guarantees. However,

its precise p.d.f. will depend on the assumptions we make about the packet loss model. Let

now R and Y denote the random variables of the RTT and the RTO respectively. From

figure 58 we can see that when L < X two more cases arise:

Case 1 (X > tE − tA): This condition means that the mobile host will still be in the bad

state, while the RTO expires the first time (time instant tE in figure 58). So if we want

to find the probability that the AN will be in bad wireless state after time ε, this can be

expressed as:

P{S(tE + ε) = G|S(tE) = W} = Pg(ε) (110)

117

The term Pg(Y) expresses the probability for the channel to be good state after time Y ,

when the RTO expires. The above holds due to the memoryless property of the distribution

of X, causing thus the channel state at time plus ε, to be independent from the state at tA.

Therefore:

Pg(ε) = P{S(ε) = G} =
TG

TH + TG
(1− e−ε/TG) (111)

So the average TO duration, for every possible RTO value, will be equal to the probability

that the channel is in good state at that specific RTO (given that it was bad before) times

the value of the RTO. So this value will be:

LTO(Y) =
6∑

i=1

2i−1Y × Pg(iY)
i−1∏

j=0

(1− Pg(jY)) + 64Y Pg(64Y)
6∏

i=0

(1− Pg(iY))

The product term in the previous equation expresses the probability that the AN was in

bad wireless state, when the TO expired in the previous time instants before i. In addition,

after the first six consecutive TOs the value of the TO will be fixed to 64Y [99]. The last

term on the above equation captures this effect.

Case 2 (X < tE − tA): In this case, we can see from figure 58, that it will also be tC < tE .

This means that the sender will not experience a TO, but instead it will receive three

duplicate acknowledgements (TD), and so it will fast retransmit the first missing packet.

The average latency introduced due to this event is:

LTD =
∫ TH

t=0
tPg(t)dt (112)

Therefore, the total latency for TCP can be expressed from the previous two equations:

LTCP =
∞∑

l=0

P [l < L] =
∫ TH

t=Y
LTO(t)fX(t)dt +

∫ TH

t=0
tPg(t)dt (113)

The first term in the above equation follows from the assumption that the disruption time

due to handoff X, is exponentially distributed with a mean equal to TH and a p.d.f fX(t).

Concerning the core network induced delay LN , that occurs mainly due to buffering at

the routing infrastructure, it has been shown that it could be modeled as a shifted Gamma

118

distribution [25, 64]:

fLN
(t) =





λe−λt(λt)ν−1

(ν−1)! if t ≥ 0

0 if t < 0
(114)

We will follow this distribution for the latency in this chapter, so that the derivation of an

analytical closed form solution is possible. Several possible analyses can be preformed in

order to model more accurate the core network performance, but this research is out of the

scope of this chapter.

7.3.2 Playback Buffer Model

In the previous subsection we estimated the average expected latency L for the TCP packets,

and the packet loss rate PW . These two quantities are primarily related to the duration of

the bad wireless state X. However, when we consider the playback buffer at the client, we

need to calculate one more parameter. This is the probability of a packet missing its deadline

when the playback buffer exists. Calculating this value, will eventually help estimate the

expected number of buffer underflow events.

So if we consider the existence of the playback buffer, the probability for a packet to be

delayed, and miss its deadline, can be formulated as:

PD = P [sent time + latency +
buffer occupancy

playback rate
≤ deadline]

PD = P [ts + LN + Lprotocol +
b1

c1
≤ td] (115)

In the above equation ts is the time that a video packet was sent, while td is the playback

deadline for this video packet. For TCP and TFRC this expression will be different. TFRC

does not introduce any latency since it does not control retransmissions and so LTFRC =

0. In the case of TCP, LTCP will be the latency incurred by the TCP retransmission

mechanisms, due to the packet loss rate PN in the core network. Therefore equation 115

will be:

119

P TCP
D = P [ts + LN + PNLTCP +

b1

c1
≤ td] (116)

P TFRC
D = P [ts + LN +

b1

c1
≤ td] (117)

These values will later help us quantify the model performance in terms of correct deadline

estimation at the sender. By elaborating on the previous formulas we can write for TCP:

P TCP
D = P [LN + PNLTCP ≤ a]

=
∫ +∞

−∞
FLN

(a− y)fLTCP (y)dy (118)

with a = td − ts − b1
c1

. The distributions in these formulas are simple sums of exponential

values, making thus the derivation of a final solution straightforward.

7.4 Multipath Video Streaming and Adaptive Playback

Throughout the next sections, we will see how we can utilize the previously developed

models for the design of practical adaptive video streaming algorithms. Our central idea is

that a better understanding of the protocol behavior, can be used so that we adapt several

functions of the media application.

Based on the previously derived equations, we can define the optimal playback rate c

given the current playback buffer occupancy b. In order for the playback buffer not to

underflow the duration of the available media for playback must exceed the latency of the

next set of arriving packets L. Or this can be written as: b
c > Lj with j ∈ Paths.

So based on our analysis till now, we can devise a multipath playback adaptation algo-

rithm that can be seen in figure 59. We use the term video data unit (V DU), to describe

a single video packet. This algorithm operates at the client and it basically calculates the

necessary model parameters based on the packet delivery events (lines 2-4). The packets

are then classified according to whether they missed their playback deadline or not and this

process helps refine the estimates for the the two values PD and L (lines 5-9). Subsequently,

the playback rate c, is adapted according to equation ??, so that fluctuations during the

120

adaptive mpath playback()
1: for all VDU received do
2: t

rj
i
← // recorded arrival time for V DUi at path j

3: P̃ j
D ← // estimate PD for path j

4: L̃j
H ← // estimate L for path j

5: for all j ∈ Paths do
6: if t

rj
i

< tdi then
7: add buffer(V DUi) // playback OK
8: else
9: record missed tdi // playback missed

10: end if
11: end for
12: play(VDUs)
13: b1 ← recalc(size)
14: c1 ← recalc(P̃ j

D, L̃j
H)

15: end for

Figure 59: Proposed playback adaptation algorithm for multipath transmission with TCP.

delivery of media packets can be accommodated. Note that during this process is performed

individually for each one of the joint wireline/wireless paths that are in use.

In the next subsection we will evaluate whether this approach can minimize two impor-

tant quantities which are the number of buffer underflow events and the initial preroll delay

∆.

7.4.1 Experimental Setup

The network testbed for our experiments consists of a client/server configuration that are

linux boxes while the middlebox is freeBSD machine that acted as a router and emulated

the multiple paths. We used the middlebox with the Dummynet software [36], for emulating

the wireless packet losses in the access networks, and buffer overflows in the core network

routers. The sequences FOREMAN, AKIYO, and COASTGURAD [94], were used for the

video streaming experiments. The H.263 encoder [44] was used for encoding the YUV

sequences into various bitrates. The video units were packetized into RTP packets and

the sent to the transport protocol which is our case were TCP and UDP/TFRC. Due to

the short duration of the sequences (150 frames), they were repeatedly fed as input to the

encoder, so that encoded sequences of longer duration could be obtained. The capacity of

121

the bottleneck link between the two routers was set to 250Kbps. All the sequences were

encoded at 128Kbps with a target frame rate of 15 fps. The results were obtained by running

the same scenario 100 times and averaging the PSNR values of the same experiments. A

summary of all the parameters used throughout our experiments in this section, can be seen

in table 5.

Table 5: Model parameters used for the multipath video streaming experiments.

Network Parameters Protocol parameters
AN : TH (WLAN) 50 ms T0 200 ms
AN : TG (WLAN) 1000 ms Wmax 6 MByte
AN : TB (WLAN) 100 ms W0 1 segment
CN : TG 1000 ms MSS 1460 bytes
CN : TB 5 ms Mobile speed 1-20 m/s

7.4.2 Experiments

In this subsection we present a set of experiments for TCP-based multipath video streaming

with the wireless network configuration that we showed in figure 56. This part of the

experiments has as primary objective to validate whether the playback algorithm shown in

figure 59, can reduce the number of buffer underflow events.

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

M
e
a

n
 t

im
e

 (
m

in
)

Mean latency (sec)

Analytical - one path

Experimental - one path

Analytical - two paths

Experimental - two paths

(a) Mean time between underflow events for
BUP<0.01

 0.1

 1

 10

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

In
it
ia

l
d

e
la

y
 (

s
e
c
)

Channel packet loss probability

Analytical - one path

Analytical - two paths

(b) Initial preroll delay needed to achieve a BUP<0.01

Figure 60: Analytical and experimental results for the multipath playback adaptation
algorithm with TCP. TCP parameters: RTO0 = 200 ms, MSS = 1460 bytes, W0 = 1
segment, Wmax = 6 MB, video duration is 100 sec.

122

Experimental results compare the proposed model-based algorithm with the most closely

related work identified in the literature. We reproduced the experiments reported at [102],

where the authors present a playback adaptation algorithm for wireless channels. A very

interesting result is presented in figure 60(a). It depicts the mean time between two buffer

underflow events as a function of the end-to-end latency between the two endpoints. We

see that when two paths were used, a reduced number of buffer underflow events when

compared to a single path.

Now figure 60(b) depicts the initial delay needed at the playback buffer, in order to

achieve a buffer underflow probability (BUP) less than 1%, as a function of the packet loss

rate for TCP. It is obvious that the value of the initial delay is increasing very fast as the

packet loss probability is increased until it saturates in a value close to 8 seconds for a video

stream that has duration of 100 seconds, when the proposed TCP model is used. However,

a streaming application that is using TCP and attempts to simply estimate the network

induced latency, has as a result a higher rate of buffer underflow events early in the video

streaming session. In order to overcome these underflow events, a larger initial delay ∆ can

be selected, by using estimate of the RTT [104].

7.5 Analytically-Driven Multipath Video Scheduling Algo-
rithm

In this section we extend the problem of optimal video streaming one step further: Given

the encoder buffer which contains a set of video packets Φ, that belong to frame f (for F

possible frames), how can we transmit these packets so that their arrival time is minimized?

For a given set of allowed schedules S, the answer to this question can be formally written

as:

s = arg min
s∈S

E[latency(f, Φ, tnd)] (119)

where n is the number of the video packet that belongs to group Φ, and tnd is the playback

deadline for this packet. The search space of the possible schedules S, depends on the

number of video packets that each TCP pipe of the multipath streaming system can send

123

as a chunk. The question that is raised now is how to formulate an algorithm for this

problem.

server ppd schedule()
1: G ← // estimate TCP goodput
2: r̃j

i ← // estimate arrival for V DUn
i at path j

3: P̃D ← // estimate PD

4: for all VDU i ∈ Φ do
5: for all i ∈Paths do
6: if t̃

rj
i

< tdi
then

7: Add V DUi in Φ#
j

8: else
9: Drop V DUi

10: end if
11: end for
12: end for
13: for all V DUs ∈ Φ#

j do
14: Find optimal set Φ∗j that min(E[D])
15: set priority(send buffer j,MBi)
16: end for
17: send(MBs∈ Φ∗j ,Path j)
recv report()
1: Client may report in feedback messages both ẽ = |tr − t̃r| and G.

Figure 61: Proposed multipath scheduling algorithm with transport protocol awareness.

Our intuition says that at the streaming server, we should transmit a video packet to the

path that will allow the playback deadline to be met sooner. We devised an algorithm that

implements the above observation, and can be seen in figure 61. This is what lines 4-9 of the

algorithm are exactly doing by identifying the set of video packets that will actually reach

the decoder in time based on the model prediction. Essentially this part of the algorithm

estimates the expected delivery time of data packets over all the available outgoing paths.

After this decision is made the algorithm invokes the greedy scheduling algorithm which

identifies the optimal schedule according to the estimated path latencies (lines 11-14). An

optimal schedule S#
j is identified for each path j. Now the relative priority of each packet

is enforced through a prioritization mechanism so that video packets that have an earlier

deadline, are committed to the fastest TCP path first. We also depict in the last line

of the algorithm, a line that indicates the ability of the client to provide feedback to the

124

sender. The feedback may involve among others, the actual reception time for a packet and

the actual goodput, allowing thus the implementation of more efficient estimators at the

sender.

 0

 5

 10

 15

 20

 25

 30

 35

 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

a
n

 l
a

te
n

c
y
 (

s
e

c
)

Average load on both paths

PPD with TCP [Ec04]

Proposed multipath scheduling with TCP

Proposed multipath scheduling with TFRC

Figure 62: Throughput as a function of the load on two concurrently used paths. Para-
meters: RTT = 500 ms, plr = 0.02, RTO0 = 200 ms, MSS=1460 bytes, W0 = 1 segment,
Wmax = 4 MB

The crucial difference of the proposed multipath media scheduling algorithm when com-

pared with related work, is that it takes into consideration the inner dynamics and operation

of the transport protocol. The majority of the related work usually operate under the as-

sumption that the underlying protocol is always UDP, and no congestion control performed.

We will show with our experimental results, that the use of analytical video streaming algo-

rithm can have significant effect on the delivered video quality for wireless mobile networks.

7.5.1 Experiments

Figure 62 presents the average latency for the transport of a 1MB media clip, as a function

of the load on the two paths. The results presented are the average values 100 simulation

runs. We compare our scheme with a packet path diversity (PPD) methodology reported

at [98], where the authors also assume the concurrent use of two paths with TCP, and

acknowledgments that are send on both of the reverse paths. The results for the proposed

multipath scheduling algorithm, depict an improvement in the average throughput for the

streaming algorithm, as figure 62 indicates. One of the reasons is that the media-oriented

125

methodology developed at [98], simply duplicates the packets and the acknowledgments

on both paths resulting into wasted bandwidth resources. However with our mechanism,

different video packets are distributed to the available paths, and error recovery is realized

through the retransmission algorithm that TCP inherently supports. This essentially means,

that redundancy is essentially introduced when it is need, and this is the case only when

a packet loss happens and a retransmission must take place. In figure 62, we also present

similar results but when TFRC was used instead of TCP. This protocol can similarly achieve

better performance when compared with the single path streaming mechanism.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

 0

 5

 10

 15

 20

 25

 30

Mean time (min) TCP analytical

TCP plus proposed scheduling analytical

Mean latency (sec) Mean latency (sec)

Mean time (min)

(a) Numerical results for MTBBU as a function of the
latency in the two used paths

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

M
e
a

n
 t
im

e
 (

m
in

)

Mean latency (sec)

Single path for TCP

Proposed model for TCP

Simulation for TCP

(b) Simulation results for MTBBU and target
BUP≤0.01 for TCP and TFRC

Figure 63: Mean time between buffer underflow (MTBBU) events for multipath media
transport with TCP. WLAN parameters: link buffer size = 20 pkts, link delay = 10 ms,
bitrate = 6 Mbps.

The next experiment involved the evaluation of the multipath scheduling algorithm for

the transport of real-time media data. The experimental setup was similar with before,

only that this time a 256Kbps CBR encoded sequence was used instead of an infinite data

backlog as before. Figure 63(a) depicts the mean time between buffer underflow events

as a function of the latency of two paths that are used concurrently. While TFRC can

perform better when compared with TCP, the multipath scheduling algorithm can monitor

precisely the packet delivery and achieve a reduced number of buffer underflow events.

Figure 63(b) depicts simulation results that show the normalized rate of buffer underflow

events, similar to previously presented results. Multipath scheduling results into significant

decrease on the number of buffer underflow events mainly because of the utilization of a

126

faster path that deliver video packets sooner. While the use of just one path may not be

able to assure constant data flow, the use of the second path can achieve that, which is

the main concern especially for media applications. We see that the possibility of using

two paths concurrently, and due to the assumption of independent paths, this approach

can significantly improve the perceived video quality. We can also observe in the same

figure that the experimental results follow closely the analytically derived model estimates.

We observed that the margin of error was less that 10% for the mean time between buffer

underflow events.

7.5.2 Comparison with MDC

In this subsection we will present comparative results of the proposed multipath schedul-

ing scheme with multiple description coding (MDC) path diversity mechanisms. For the

MDC experiments, we encoded two sequences into a base and enhancement layer 128Kbps

and 64Kbps respectively. For the MDC experiments, we reproduced experiments reported

at [25]. A short set of experimental results can be seen in figure 64. At higher packet

loss rates, the MDC system provides higher quality due to the redundancy introduced by

the two description. However, the proposed scheduling algorithm performs better for lower

packet loss rates which are less than 5%. In this case, bandwidth utilization is considerably

improved, since the level of redundancy that MDC introduces is not actually needed.

 22

 24

 26

 28

 30

 32

 34

 36

 0 50 100 150 200 250 300

P
S

N
R

 (
d

B
)

Bitrate (Kbps)

One path with SDC

Two paths with MDC

Two path with proposed scheduling

Two path with proposed scheduling and ARQ

Figure 64: Distortion-rate performance results for QCIF AKIYO.

127

However, these results do not represent the final step of our analytically-based algorithm

design procedure. In the next section, we will develop a multipath ARQ algorithm that can

improve performance of the proposed multipath scheduling algorithm. The objective will

be to improve error resiliency in the face of increased packet loss rate that takes place in

one of the used paths.

7.6 Multipath ARQ of Video Packets

Following up on the methodology that we have developed till now, we will present a new

algorithm for implementing more efficient automatic repeat request (ARQ), when multipath

video streaming is the target application. Consider again our TCP-based system model

shown in figure 56, with a session that consists of N separate end-to-end TCP connections.

Since TCP is our base protocol, the application cannot control retransmission of specific

packets. However, what we see here is the potential to control retransmissions in a multipath

video streaming setting. What we propose in this section, is to retransmit lost packets to

a different path from the one originally sent, based on the knowledge we have about the

estimated latency for each path. The intuition is that we want to retransmit packets from

a fast path since they have already suffered significant delay and the playback deadline

might not be met. Essentially, it is up to the streaming protocol design to define how

and when it will commit a specific packet to a specific path. However, if a packet is sent

through a specific TCP path, the application cannot enforce a re-assignment of a possible

retransmission to another TCP pipe that corresponds to a different path. In order to solve

this problem, the solution we devised is to replicate the packet that is of interest, to another

TCP pipe. In this way the packet that is of interest to us will reach the receiver sooner.

7.6.1 Experiments

To validate our intuition behind the design of the multipath retransmission algorithm

(MRTX), we performed a set of experiments that concurrently use two paths for a sin-

gle media flow. Figure 65(a) depicts analytical results that indicate an increased packet

loss probability for a specific path, which creates a significant burden to the other paths

because of the retransmissions. This validates our intuition for the necessity of a careful

128

retransmission policy in a multipath transport protocol. Especially if a wireless path is

involved, then the packet loss rate due to wireless errors will probably be higher, making

thus the proposed algorithm even more useful.

 5
 10
 15
 20
 25
 30
 35
 40
 45

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 5
 10
 15
 20
 25
 30
 35
 40
 45

Throughput (packets/sec)

Regular retransmission

Proposed multipath retransmission

Packet loss probability

Packet loss probability

Throughput (packets/sec)

(a) Aggregate throughput with MRTX for two paths
with varying packet loss rates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
u
m

u
la

ti
v
e
 f

ra
c
ti
o

n

Goodput (Kbytes/sec)

Regular retransmission

Multipath rtx on best path

Multipath rtx on both paths

(b) Cumulative fraction of the throughput with TCP

Figure 65: Analytical and simulation results for the multipath retransmission algorithm.

Another issue that arises is that in this way the receiver may get the retransmitted packet

from another end-to-end path to which of course it has to reply with an acknowledgment.

The receiver will send the acknowledgment back to the same path or the source from

where it received it. Implicitly this creates a path monitoring mechanism and updates

the status variables of a specific path. Experimental results are depicted in figure 65(b).

More specifically we present the cumulative fraction of data received for three different

retransmission policies, namely selective retransmission on just one path, retransmission

on both paths, and finally regular retransmission. The improved throughput observed,

is attributed to the faster reception of the retransmitted packet, and consequently the

faster acknowledgment of that packet. This results into faster turnaround times and higher

throughput.

7.7 Conclusions

In this chapter we demonstrated that the use of analytical performance models can be

used for driving the behavior of multipath video streaming protocols, so that the delivered

video quality is improved. To achieve this objective, we initially developed a stochastic

129

closed-form latency model, that captures the behavior of TCP when multipath transport

is considered. Based on the previously developed models, we proposed three algorithms for

optimizing video streaming. More specifically,we initially presented an adaptive playback

adaption algorithm that operates only at the client without intervention of the sender. The

second algorithm controls multipath scheduling of video packets, and can operate on top of

any multipath transport protocol. Main task of this algorithm, is the estimation of expected

latencies of video packets, and the proper allocation to the outgoing paths, based on the

playback deadlines at the client. Finally, we introduce the idea of multipath retransmission,

and a new algorithm, that intelligently decides the allocation of video packet retransmissions

to the available paths. Results for the developed algorithms are very promising, since we

observed throughput improvement of nearly 10% over a typical multipath retransmission

policy.

130

CHAPTER VIII

CONCLUSIONS

In this dissertation we addressed the problem of efficient media delivery in heterogeneous

wireless networks. We developed a set of comprehensive models that characterized the

performance of TCP in a variety of wireless mobile scenarios. Subsequently, we presented

the design of algorithms that optimize wireless multimedia delivery by carefully considering

the predictions of the developed models. The conclusions and important contributions from

this dissertation are summarized below:

Transport Protocol Models for CBR and VBR Workloads: In this chapter

we presented analytical models that characterize TCP and TFRC throughput for different

traffic workloads, namely CBR, VBR and bulk traffic in a wireless/wired network setup.

The first important conclusion that we draw from the analysis in this chapter, is that the

assumption of flows with an infinite data backlog, may significantly affect the TCP through-

put estimate in case of CBR and VBR workloads. We demonstrated that with our model,

these predictions can be more accurate, leading to a better understanding of the protocol

and workload interactions. Therefore, when performance is evaluated, someone should try

to correlate carefully the transport protocol in use, with the actual workload. We identified

TFRC’s inability to provide high throughput service when the traffic workload is charac-

terized by large rate variations (e.g. VBR). This means that a number of additional factors

have to be considered before deploying the protocol for a media application. For wireless

scenarios, the proposed model does not differentiate significantly. Even, the asymmetry in

the packet loss probability across the wireline wireless networks does not significantly the

throughput since both TCP and TFRC experience the aggregate packet loss.

Rate-Distortion Optimized Unicast Video Streaming with TCP: In this chapter

we presented an analytical study that characterizes the performance of video streaming with

the transmission control protocol (TCP). Initially, we developed an analytical model of the

131

expected video distortion at the decoder with respect to the TCP parameters, channel

state, and error concealment method at the receiver. Based on this model we propose

an algorithm for RD optimized mode selection (RDOMS) for video streaming with TCP.

Experimental results for real-time video streaming showed PSNR improvement of nearly two

db over currently proposed TCP-based streaming mechanisms. The next contribution is the

development of a joint model of the TCP protocol, and the playback buffer at the receiver.

Based on this model, we derived the optimal playback rate at the decoder. Subsequently,

based on the two models, we proposed an algorithm, for RD optimized packet scheduling

with TCP. Our results show an additional improvement of nearly one db, when packet

scheduling is applied together with the RDOMS algorithm. Therefore, we demonstarted

that TCP presents a viable solution for video streaming applications. Moreover, we showed

that if additional optimizations can be preformed at the video encoder side, further quality

improvement can be observed. The wide-scale deployment of TCP, and the ability to realize

the proposed algorithms at the application level, can assure that the proposed streaming

mechanism presents a viable solution.

Modeling the Effect of Handoffs on Transport Protocol Performance: In this

chapter we presented a model for studying the effects of wireless handoffs in two transport

protocols, namely TCP and TFRC. The model was found to be accurate for TCP in both

the cases where HMIP and MIP-RO were used as the underlying mobility management

protocol. However, the TFRC model predicts the expected throughput with even better

accuracy, due to the simpler protocol algorithms. For example the worst case error for

the TCP model was nearly 22% while for the TFRC model it was 13%. An important

observation from the conducted experiments is that the use of buffering in the old access

network, can significantly improved the delivered throughput. If the requirements of the

system specify that no packet loss should take place, the rule of thumb for TCP, is that the

buffer size should be equal to the bandwidth-delay product of the old access path times the

expected disruption time. Concerning TFRC, we found that the required buffer size should

be surprisingly bigger by 60% than TCP. The reason for that is the slow responsiveness of

TFRC which does not drastically cut its rate, resulting in the need of a larger buffer.

132

We also introduced in this chapter the notion of the ”recovery period”, which is defined

as the time required for the transport protocol to achieve the nominal throughput in a new

link, after a handoff that lasted th. The slow-responsive rate control algorithm of TFRC,

requires less time in order to recover when compared with TCP. However, we found that as

the disruption time is increased, TFRC suffers from more packet losses than TCP, due to

the slow-responsive algorithm, which is persistent on sending new packets to the network.

Video Streaming in Heterogeneous Mobile Wireless Networks: In this chap-

ter we developed an analytical-driven video streaming protocol, suitable for heterogeneous

wireless networks where both handoffs and wireless errors are possible. Subsequently, we

used our comprehensive model the development of protocol for managing an end-to-end

video streaming session in a heterogeneous wireless environment. The proposed protocol,

can be easily implemented on top of the aforementioned transport protocols. Performance

evaluation revealed the protocol’s ability to maintain low playback buffer underflow rate.

In the second part of this chapter we proposes a new media handoff protocol, which

when it is combined with the previously developed streaming protocol can assure the best

possible QoS for a media streaming session. With the development of this complete protocol

suite, we demonstrate that the use of analytical, closed-form models that capture the effect

of heterogeneous wireless networks, can be utilized by a practical cross-layer protocol that

controls the unicast streaming session. We prove with extensive experimental and simulation

results that smooth media handoff can significantly improve performance by maintaining a

more constant output rate.

Multipath Transport Protocol Models for Wireless Video Streaming: In this

chapter we demonstrated that the use of analytical performance models can be used for

driving the behavior of a multipath video streaming protocols, so that the delivered video

quality is improved. To achieve this objective, we initially developed a stochastic closed-form

latency model, that captures the behavior of TCP when multipath transport is considered.

Based on the previously developed models, we proposed three algorithms for optimiz-

ing video streaming. More specifically,we initially present an adaptive playback adaption

algorithm that operates only at the client without intervention of the sender. The second

133

algorithm controls multipath scheduling of video packets, and can operate on top of any of

the existing multipath transport protocols. Main task of this algorithm, is the estimation

of expected latencies of video packets, and the proper allocation to the outgoing paths,

based on the playback deadlines at the client. Finally, we introduce the idea of multi-

path retransmission, and a new algorithm, that intelligently decides the allocation of video

packet retransmissions to the available paths. Results for the developed algorithms are very

promising, since we observed throughput improvement of nearly % over a typical multipath

retransmission policy.

134

APPENDIX A

TCP RECEIVER MODEL

In this section we present the development of a simple model, in the same spirit as before,

for the goodput of a TCP receiver.

If we consider a path that is characterized by packet loss probability p, the probability

to receive correctly up to l packets before a loss occurs, will be described by a Bernoulli

trial process and it will be equal to P [l = k] = (1 − p)kp. After a packet loss occurs, the

receiver will start sending duplicate acknowledgments for every received packet. However,

it will still be receiving packets from the sender until the sender is informed for the packet

loss with three duplicate ACKs. Note that after a loss event, a number of βi = Wi − li − 1

more packets will be send, where Wi is the value of the congestion window in the current

RTT, and α is the total number of packets send correctly in the NL round. Given that

b is the number of packets acknowledged with a single ACK packet, then the correlation

between the duration of NL round and window size will be [80]:

Wi = Wi−1/2 + Xi/b− 1 ⇒

E[X] =
b

2
E[W] =

2 + b

6
+

√
2b(1− p)

3p
+

(2 + b

6

)2
(120)

The average number of packets that will be correctly received, assuming that all the packets

after the one lost in the same NL round are also lost, will be R = a+2β. However, we want

to be able to calculate the average number of packets received during each RTT round,

given that the duration of an NL round will correspond to Xi + 1 RTTs. If we look into

equation 120 more carefully, we can see that in each successive RTT k of an NL round i,

the sender transmits XiWi−1

2 + kb packets. This indicates that until there is a packet loss,

a steady flow of at least XiWi−1

2 and Wi−1

2 packets will be sent during the entire NL round

and each RTT respectively. Therefore, the total number of packets received in a round of

135

Xi + 1 RTTs will be:

XiWi−1

2
+

Xi/b−1∑

0

kb + 2× βi

So, the average number of the received packets per RTT round which is r = a + 2β, after a

few algebraic manipulations becomes:

E[R] = 2
(2 + b

3b
+

√
8(1− p)

3bp
+

(2 + b

3b

)2)
− 1

p
− 2 (121)

So the closed-form equation for the receiver goodput will be:

GBULK =
E[R]

(X + 1)RTT
(122)

One interesting quantity is the goodput variance at the receiver, which is given from

V ar(R) = E[R2] − E[R]2. It is obvious that the problem is essentially reduces to the

calculation of E[R2]. We can easily find that E[l2] =
∑∞

k=0 k2(1 − p)k−1p = 1
p2 . Further-

more, the number of packets that were sent until the packet that was lost will also be equal

to:

li =
Xi/b−1∑

k=0

(
Wi−1

2
+ k)b (123)

From the above equation, we can obtain the expected value of E[α], which when it is

combined with equation 120 we have:

E[X2] = 2bE[l]− bE[X]E[W] + bE[X] (124)

By further manipulations of equation 120, and the use of equation 124 we get:

W 2
i =

W 2
i−1

4
+

X2
i

b2
+ Wi−1

Xi

b
⇒

E[W 2] = (2E[l] + E[X])/b (125)

Concerning E[R2] calculation, from equations 121 and 125, and since βi = Wi − li − 1, we

have:

136

l2 = 4W 2
i − 4Wia + a2 ⇒

E[R2] = (
2 + b

3b
+

√
8(1− p)

3bp
+

(2 + b

3b

)2
)(1/2− 4/p) +

8
pb

+ 1/p2 (126)

Finally the receiver variance is obtained by combining equations 121 and 126:

V ar(R) = E[(R−E[R])2] = E[R2]−E[R]2 (127)

137

APPENDIX B

MOBILITY PROTOCOL MODELS

In this section we define a simple analytical model that captures the latency induced by

all the operational phases (registration, tunneling, and packet delivery) of mobility man-

agement protocols. Specifically, we develop analytical models for two promising mobile

IP optimized protocol versions: Hierarchical Mobile IP (HMIP) and Mobile IP with route

optimization (MIP-RO).

Packet Delivery: Packet delivery cost is crucial overhead in Mobile IP’s performance,

as packet tunneling is necessary even when the MH moves infrequently [103]. We calculate

the overhead from packet delivery for MIP, HMIP, and MIP-RO.

Similar to [31, 114] we also define the following variables: sh and sg as the packet

processing delays at the HA and GFA respectively. Lch, Lhg, and Lgf are the latencies for

delivering a packet from the CH to HA, HA to GFA, and GFA to FA respectively. Therefore,

hierarchical mobile IP has a packet delivery overhead [114]:

Lhmip
PD = sh + sg + Lhg + Lgf + Lch (128)

The transmission delay from GFA to FA Lgf , is calculated as follows: Lgf = lgfδ, where

δ is a proportionality constant and lgf is the GFA/FA distance. If λa is the data packet

arrival rate at the HA, then the packet processing delay is analogous to λa with sh = νλa.

In addition, the lookup overhead of the IP routing table has to be calculated which is

analogous to its length e, the number of MHs in the subnet ω, and of course the packet

arrival rate λa. Therefore this cost is kλalog(k). We also assume that the distance between

CH-HA and HA-GFA is the same, making thus Lhg = Lch. So equation 128 becomes:

Lhmip
PD = νλa + eλa(aωk + log(k)) + (lgf + 2 ∗ lhg)δD (129)

138

On the other hand, MIP-RO does not suffer from triangular routing (sh = 0) but it still

has to suffer the tunneling overhead:

Lmipro
PD = sg + Lcg + Lgf (130)

Also smipro
g is the same with shmip

g because in addition to the routing overhead at the GFA,

there is also the tunneling cost present (only sh is avoided). With MIP-RO packets also

have to be routed to the mobile host, and so the IP routing overhead does exist and that is

why sg 6= 0. Thus we have:

Lmipro
PD = ζkλa(aωk + log(k)) + (lgf + lcg)δD (131)

Binding Updates: As mentioned earlier, binding or location updates are a requirement

in Mobile IP even when the mobile host does not change its current address [83]. Let sf , sg,

sh, are the processing latencies of binding updates at the FA, GFA, and HA respectively, and

LUhg, LUgf , LUfm, are the transmission costs of binding updates between the HA-GFA,

GFA-FA, and FA-MH respectively. Finally δU is a distance cost unit. So the latency due

to a binding update to the HA and the local GFA are given by the following two equations:

LUhmip
uh = 2ρf + 2ρg + ρh + 2LUhg + 2LUgf + 2LUfm

(132)

LUhmip
ur = 2sf + sg + 2lgfδU (133)

For the MIP-RO case LUch will have to include the CH notification delay which is equal to

2lcg. So LUch is:

LUmipro
ch = 2sf + 2sg + 2(lgf + lcg)δU (134)

LUmipro
BU =

LUch

Tf
(135)

139

In order to calculate the expected disruption time for a specific scheme due to the latency

caused by binding updates, we have to calculate the latency incurred by a specific network

configuration. This means that for HMIP during handoff, the MH will only suffer the

latency due to the the local binding update LUhmip
ur . We can easily see that the disruption

time becomes thmip
h = LUhmip

ur . Similarly, for MIP-RO we have tmipro
h = LUmipro

ch .

140

REFERENCES

[1] “3GPP: Third Generation Partnership Project.” http://www.3gpp.org.

[2] Ahmed, T., Mehaoua, A., Boutaba, R., and Iraqi, Y., “Adaptive Packet Video
Streaming Over IP Networks: A Cross-Layer Approach,” IEEE Journal On Selected
Areas In Communications, vol. 23, no. 2, 2005.

[3] Akan, O. and Akyildiz, I., “Analytic Rate Control,” IEEE Transactions on Net-
working, vol. 12, p. 634644, August 2004.

[4] Akyildiz, I. F. and others, “Mobility Management in Next-Generation Wireless
Systems,” IEEE Proceedings, vol. 87, pp. 1347–1384, August 1999.

[5] Altman, E., Avrachenkov, K., and Barakat, C., “A Stochastic Model of
TCP/IP with Stationary Random Loss,” in SIGCOMM, 2000.

[6] Altman, E., Avrachenkov, K., and Barakat, C., “TCP in presence of bursty
losses,” in SIGMETRICS, 2000.

[7] Apostolopoulos, J., Wong, T., Tan, W., and Wee, S., “On multiple description
streaming with content delivery networks,” in INFOCOM, 2002.

[8] Arauz, J. and Krishnamurthy, P., “Markov Modeling of 802.11 channels,” in
IEEE Vehicular Technology Conference (VTC), 2003.

[9] Bakre, A. and Badrinath, B. R., “I-TCP: Indirect-TCP for Mobile Hosts,” in
ICDCS, 1995.

[10] Balakrishnan, H., Challenges to Reliable Data Transport over Heterogeneous Wire-
less Networks. PhD thesis, UC Berkeley, 1998.

[11] Barford, P. and Crovella, M., “Generating representative Web workloads for
network and server performance evaluation,” in ACM SIGMETRICS, 1998.

[12] Begen, A. C. and Altunbasak, Y., “Timely inference of late/lost packets in real-
time streaming applications,” in Picture Coding Symposium (PCS), 2004.

[13] Begen, A. C. and Altunbasak, Y., “Videoconferencing over an intermediate-
proxy,” in IEEE International Conference on Image Processing (ICIP), 2004.

[14] bender, P. and others, “CDMA/HDR: A Bandwidth Efficient High-Speed Wireless
Data Service for Nomadic Users,” IEEE Communications Magazine, pp. 70–77, July
2000.

[15] Blondia, C. and others, “Performance Analysis of Optimized Smooth Handoff in
Mobile IP,” in MSWiM, 2002.

[16] Blondia, C. and others, “Performance Comparison of Low Latency Mobile IP
schemes,” in WiOpt, 2003.

141

[17] Borsos, T., “Practical Model for VBR Video Traffic with Applications,” in IEEE
International Conference on Management of Multimedia Networks and Services, 2001.

[18] Boudec, J.-Y. L., Performance Evaluation of Computer and Communication Sys-
tems. http://icalwww.epfl.ch/perfeval/, 2005.

[19] Boukerche, A. and others, “A Two-Phase Handoff Management Scheme for Syn-
chronizing Multimedia Units Over Wireless Networks,” in IEEE International Sym-
posium on Computers and Communication (ISCC), 2003.

[20] Boukerche, A. and Harold Owens, I., “Media synchronization and QoS packet
scheduling algorithms for wireless systems,” Mobile Networks and Applications,
vol. 10, no. 1-2, pp. 233–249, 2005.

[21] Cali, F., Conti, M., and Gregori, E., “IEEE 802.11 wireless LAN: capacity
analysis and protocol enhancement,” in INFOCOM, 1998.

[22] Cardwell, N. and others, “Modeling TCP Latency,” in INFOCOM, 2000.

[23] Carpenter, B., “Architectural Principles of the Internet.” RFC 1958, 1996.

[24] Cen, S. and others, “End-to-end differentiation of congestion and wireless losses,”
in MMCN, 2002.

[25] Chakareski, J. and Girod, B., “Rate-distortion Optimized Packet Scheduling and
Routing for Media Streaming with Path Diversity,” in IEEE Data Compression Con-
ference (DCC), 2003.

[26] Chakravorty, R., Cartwright, J., and Pratt, I., “Practical Experience with
TCP over GPRS,” in GLOBECOM, 2002.

[27] Chakravorty, R., Clark, A., , and Pratt, I., “Optimizing Web Delivery Over
Wireless Links: Design, Implementation, and Experiences,” IEEE Journal On Se-
lected Areas In Communications, vol. 23, no. 2, 2005.

[28] Chan, M. C. and Ramjee, R., “TCP/IP Performance over 3G Wireless Links with
Rate and Delay Variation,” in ACM International Conference on Mobile Computing
and Networking (MOBICOM), 2002.

[29] Chen, J., Lv, T., and Zheng1, H., “Joint Cross-layer Design for Wireless QoS
Content Delivery,” in ISCAS, 2004.

[30] Chen, M. and Zakhor, A., “Transmission Protocols for Streaming Video over Wire-
less,” in IEEE International Conference on Image Processing (ICIP), 2004.

[31] Chen, W. and Ho, J., “Performance Analysis of Adaptive Location Management
for Mobile IP,” Tech. Rep. 97-CSE-13, Southern Methodist University, 1997.

[32] Chou, P. A. and Miao, Z., “Rate-distortion optimized streaming of packetized
media,” IEEE Transactions On Circuits and Systems for Video Technology, 2001.

[33] Chou, P. A. and Sehgal, A., “Rate-distortion optimized receiver-driven streaming
over best-effort networks,” in IEEE International PacketVideo Workshop, 2002.

142

[34] Crovella, M. and Bestavros, A., “Self-Similarity in World Wide Web Traffic: Ev-
idence and Possible Cause,” IEEE/ACM Transactions on Networking, vol. 5, pp. 835–
846, December 1996.

[35] Droms, R., “Dynamic Host Configuration Protocol.” RFC 2131, March 1997.

[36] “Dummynet.” http://info.iet.unipi.it/ luigi/ip dummynet/.

[37] Etoh, M. and Yoshimura, T., “Advances in Wireless Video Delivery,” IEEE Pro-
ceedings, vol. 93, January 2005.

[38] Floyd, S. and Fall, K., “Promoting the Use of End-to-End Congestion Control in
the Internet,” IEEE/ACM Transactions on Networking, August 1999.

[39] Frossard, P., “FEC Performance in Multimedia Streaming,” IEEE Communication
Letters, p. 122124, March 2001.

[40] Goyal, V. K., “Multiple Description Coding: Compression Meets the Network,”
IEEE Signal Processing Magazine, September 2001.

[41] Gupta, R., Chen, M., McCanne, S., and Walrand, J., “A Receiver-Driven
Transport Protocol for the Web,” in Informs, 2001.

[42] Gurtov, A., “Effect of Vertical Handovers on Performance of TCP-Friendly Rate
Control,” in ACM Computer Communications Review, 2004.

[43] Gurtov, A. and Floyd, S., “Modeling Wireless Links for Transport Protocols,”
ACM Computer Communications Review, vol. 34, pp. 85–96, April 2004.

[44] “H.263 codec.” http://www.xs4all.nl/ roalt/h263.html.

[45] “ITU-T Recommendation H.264, Advanced video coding for generic audiovisual ser-
vices,” May 2003.

[46] Handley, M., Floyd, S., Pahdye, J., and Widmer, J., “TCP Friendly Rate
Control (TFRC): Protocol Specification.” RFC 3448, January 2003.

[47] Holland, G. and Vaidya, N., “Analysis of TCP performance over mobile ad hoc
networks,” in ACM International Conference on Mobile Computing and Networking
(MOBICOM), 1999.

[48] Holma, H. and Toskala, A., WCDMA for UMTS. Wiley, 2nd ed., 2002.

[49] Hsiao, P.-H., Kung, H., and Tan, K.-S., “Video over TCP with Receiver-based
Delay Control,” in ACM NOSSDAV, 2001.

[50] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface.”
IEEE Std 802.16, 2001.

[51] Izquierdo, M. R. and Reeves, D. S., “A survey of statistical source models for
variable-bit-rate compressed video,” Multimedia Systems, 1999.

[52] Jacobson, V., “Congestion Avoidance and Control,” in ACM SIGCOMM, pp. 314–
329, August 1988.

143

[53] Kalman, M., Ramanathan, P., and Girod, B., “Rate-distortion optimized video
streaming with multiple deadlines,” in IEEE International Conference on Image
Processing (ICIP), vol. 3, pp. 661–664, September 2003.

[54] Kalman, M., Steinbach, E., and Girod, B., “Adaptive playout for real-time media
streaming,” in IEEE International Conference on Image Processing (ICIP), October
2001.

[55] Kalman, M. and others, “Adaptive Media Playout for Low-Delay Video Streaming
Over Error-Prone Channels,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 14, p. 841851, June 2004.

[56] Karrer, R. and Gross, T., “Dynamic Handoff of Multimedia Streams,” in NOSS-
DAV, 2001.

[57] Karrer, R. and Gross, T., “Multipath streaming in best-effort networks,” in IEEE
International Conference on Communications (ICC), 2003.

[58] Kim, M. Y., “Rate-Distortion Comparisons between FEC and MDC based on Gilbert
Channel Model,” in International Conference on Networks (ICON), 2003.

[59] Kolding and others, “High-speed Downlink Packet Access: WCDMA Evolution,”
IEEE Vehicular Society Technolgy News, vol. 50, no. 1, pp. 4–10, 2003.

[60] Krasic, C., Li, K., and Walpole, J., “The Case for Streaming Multimedia with
TCP,” in Workshop on Interactive Distributed Multimedia Sytems (IDMS), (Lan-
caster, U.K.), September 2001.

[61] Krunz, M. and Tripathi, S. K., “On the characterization of VBR MPEG streams,”
in ACM SIGMETRICS, 1997.

[62] Lakshman, T. and Madhow, U., “The performance of TCP/IP for networks with
high bandwidth-delay products,” IEEE/ACM Transactions on Networking, vol. 5,
pp. 336–350, june 1997.

[63] Larzon, L.-A. and others, “The Lightweight User Datagram Protocol (UDP-
Lite).” RFC 3828, July 2004.

[64] Lee, Y.-C., Error Resilient Video Streaming over Lossy Networks. PhD thesis, Geor-
gia Institute of Technology, 2003.

[65] Lee, Y.-C., Kim, J., Altunbasak, Y., and Mersereau, R., “Performance Com-
parisons of Layered and Multiple Description Coded Video Streaming over Error-
Prone Networks,” in ICC, 2003.

[66] Li, B., Li, L., Li, B., and Cao, X.-R., “On handoff performance for an integrated
voice/data cellular system,” Kluwer Wireless Networks, vol. 9, no. 4, pp. 393–402,
2003.

[67] Li, J.-S., “Modeling VBR Traffic with Autoregressive Gaussian Processes,” in IEEE
International Conference on Networks (ICON), 2000.

[68] Liang, S. and Cheriton, D., “TCP-RTM: Using TCP for Real Time Applications,”
in ICNP, 2002.

144

[69] Liang, Y. and Girod, B., “Prescient RD optimized packet dependency manage-
ment for low-latency video streaming,” in IEEE International Conference on Image
Processing (ICIP), vol. 2, pp. 659–662, September 2003.

[70] Manzoni, P., Cremonesi, P., and Serazzi, G., “Workload Models of VBR Video
Traffic and Their Use in Resource Allocation Policies,” IEEE/ACM Transactions On
Networking, vol. 7, pp. 387–397, June 1999.

[71] McNair, J., Akyildiz, I., and Bender, M., “Handoffs for Real-Time Traffic in
Mobile IP Version 6 Networks,” in IEEE ICC, 2001.

[72] Mehra, P. and Zakhor, A., “TCP-Based Video Streaming Using Receiver-Driven
Bandwidth Sharing,” in International Packet Video Workshop, 2003.

[73] Miao, Z. and Ortega, A., “Optimal Scheduling for Streaming of Scalable Media,”
in Asilomar Conference on Signals, Systems, and Computers, 2001.

[74] Misra, V. and others, “Stochastic Differential Equation Modeling and Analysis of
TCP-Windowsize Behavior,” tech. rep., University of Massachussets: ECE-TR-CCS-
99-10-01, 1999.

[75] Monks, J., Sinha, P., and Bharghavan, V., “Limitations of TCP-ELFN for ad
hoc networks,” in MOMUC, October 2000.

[76] Mukherjee, B. and Brecht, T., “Time-Lined TCP for the TCP-Friendly Delivery
of Streaming Media,” in ICNP, 2000.

[77] “Network simulator.”

[78] Originization, I. S. http://www.iso.org.

[79] Pack, S. and Choi, Y., “Performance Analysis of Hierarchical Mobile IPv6 in IP-
based Cellular Networks,” in PIMRC, 2003.

[80] Padhye, J., Firoiu, V., and Towsley, D., “Modeling TCP Reno Performance: A
Simple Model and Its Empirical Validation,” IEEE/ACM Transactions on Network-
ing, vol. 8, pp. 133–145, April 2000.

[81] Parikh, H. and others, “Seamless Handoff of Mobile Terminal from WLAN to
cdma2000 Network,” 2003.

[82] Paxson, V., “Empirically Derived Analytical Models of Wide-Area TCP Connec-
tions,” IEEE/ACM Transactions on Networking, vol. 2, August 1994.

[83] Perkins, C., “IP Mobility Support for IPv4.” RFC 3220, January 2002.

[84] Postel, J., “Transmission Control Protocol.” RFC 793, 1981.

[85] “Quicktime.” http://www.apple.com.

[86] Rappaport, T., Seidel, S., and Takamizawa, K., “Statistical Channel Impulse
Response Models for Factory and Open Plan Building Radio Communication System
Design,” IEEE Transactions on Communications, vol. 39, p. 794807, May 1991.

145

[87] “Real media.” http://www.realnetworks.com.

[88] Reinbold, P. and Bonaventure, O., “A Survey of IP micro-mobility protocols.”
citeseer.nj.nec.com/reinbold02survey.html, 2002.

[89] Ross, S., Introduction to probability models. Academic Press, 2003.

[90] S. Low, L. P. and Wang, L., “Understanding TCP Vegas: A duality model,” in
SIGMETRICS, 2001.

[91] Samios, C. B. and Vernon, M. K., “Modeling the throughput of TCP Vegas,” in
International conference on Measurement and modeling of computer systems (SIG-
METRICS), 2003.

[92] Schulzrinne, Casner, Frederick, and Jacobson, “RTP: A Transport Protocol
for Real-Time Applications.” draft-ietf-avt-rtp-new-12.txt, March 2003.

[93] Schulzrinne, H. and others, “Real Time Streaming Protocol (RTSP).” RFC 2326,
1998.

[94] “TML Video sequences.” Available from http://kbs.cs.tu-
berlin.de/ stewe/vceg/sequences.htm.

[95] Sikdar, B., Kalyanaraman, S., and Vastola, K., “Analytic models for the la-
tency and steady-state throughput of TCP Tahoe, Reno and SACK,” in INFOCOM,
2001.

[96] Sinha, P., Venkitaraman, N., Sivakumar, R., and Bharghavan, V., “WTCP:
A reliable Transport Protocol for Wireless Wide-Area Networks,” in ACM Interna-
tional Conference on Mobile Computing and Networking (MOBICOM), 1999.

[97] Soong, A. and others, “Forward High-Speed Wireless Packet Data Service in IS-
2000 – 1xEV-DV,” IEEE Communications Magazine, August 2003.

[98] Steinbach, E., Liang, Y., and Girod, B., “A simulation study of packet path
diversity for TCP file transfer and media transport on the Internet,” in Tyrrhenian
International Workshop on Digital Communications (IWDC), 2002.

[99] Stevens, R., TCP/IP Illustrated Volume 1. Addison-Wesley, 1994.

[100] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and Conrad, P., “SCTP
Partial Reliability Extension.” draft-ietf-tsvwg-prsctp-00.txt, June 2003.

[101] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Tay-
lor, T., Rytina, I., Kalla, M., Zhang, L., and Paxson, V., “Stream Control
Transmission Protocol.” RFC 2960, October 2000.

[102] Stockhammer, T., Jenkac, H., and Kuhn, G., “Streaming Video Over Variable
Bit-Rate Wireless Channels,” IEEE Transactions on Multimedia, Special Issue on
Streaming Media, vol. 6, pp. 268–277, April 2004.

[103] Stojmenovic, I., Handbook of Wireless Networks and Mobile Computing. John Wiley
and Sons, February 2002.

146

[104] Sun, M.-T. and Reibman, A. R., Compressed Video Over Networks. Marcel Dekker
Inc., September 2001.

[105] Tan, D. and Zahkor, A., “Real-time Internet Video Using Error Resilient Scalable
Compression and TCP-friendly ransport Protocol,” IEEE Trans. on Multimedia, May
1999.

[106] Tian, D., Lee, Y.-C., AlRegib, G., and Altunbasak, Y., “Packetized Media
Streaming over Multiple Wireless Channels,” in ICC, 2004.

[107] Tsukamoto, K., Hori, Y., and Oie, Y., “Mobility management of transport pro-
tocol supporting multiple connections,” in The second international workshop on mo-
bility management & wireless access protocols (Mobiwac), 2004.

[108] Venkataram, P., Rajavelsamy, R., and Laxmaiah, S., “A method of data trans-
fer control during handoffs in mobile-IP based multimedia networks,” ACM Computer
Communications Review, vol. 5, no. 2, pp. 27–36, 2001.

[109] Wang, T. C. and others, “Low-Delay and Error-Robust Wireless Video Transmis-
sion for Video Communications,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 12, pp. 1049–1058, December 2002.

[110] Wang, Y., Ostermann, J., and Zhang, Y.-Q., Video Processing and Communi-
cations. Prentice Hall, 2002.

[111] “Windows media.” http://www.microsoft.com.

[112] Wu, D., Hou, T., Zhu, W., Lee, H.-J., Chiang, T., Zhang, Y.-Q., and Chao,
H. J., “On End-to-End Architecture for Transporting MPEG-4 Video over the Inter-
net,” IEEE Trans. on Circuits and Systems for Video Technology, September 2000.

[113] Wu, D. and others, “An End-to-End Approach for Optimal Mode Selection in Inter-
net Video Communication: Theory and Application,” IEEE JSAC, vol. 18, pp. 977–
995, June 2000.

[114] Xie, J. and Akyildiz, I. F., “A Novel Distributed Location Management Scheme for
Minimizing Signaling Costs in Mobile IP,” IEEE Transactions on Mobile Computing,
vol. 1, pp. 163–175, July-September 2002.

[115] Yang, Y., Kim, M., and Lam, S., “Transient Behaviors of TCP-friendly Congestion
Control Protocols,” in INFOCOM, 2001.

[116] Z., M. and Ortega, A., “Expected Runtime Distortion Based Scheduling for Deliv-
ery of Scalable Media,” in International Conference of Packet Video, 2002.

[117] Zhang, Q., Zhu, W., and Zhang, Y., “Resource Allocation for Multimedia Stream-
ing over the Internet,” IEEE Transactions on Multimedia, vol. 3, pp. 339–335, Sep-
tember 2001.

[118] Zhang, Y., Paxson, V., and Shenker, S., “The stationarity of internet path prop-
erties: Routing, loss, and throughput.,” tech. rep., ACIRI, 2000.

147

[119] Zorzi, M., Rao, R. R., and Milstein, L. B., “ARQ error control for fading mobile
radio channels,” IEEE Transactions on Vehicular Technology, vol. 46, pp. 445–455,
May 1997.

148

