3 research outputs found

    Using GPU to Accelerate Linear Computations in Power System Applications

    Get PDF
    With the development of advanced power system controls, the industrial and research community is becoming more interested in simulating larger interconnected power grids. It is always critical to incorporate advanced computing technologies to accelerate these power system computations. Power flow, one of the most fundamental computations in power system analysis, converts the solution of non-linear systems to that of a set of linear systems via the Newton method or one of its variants. An efficient solution to these linear equations is the key to improving the performance of power flow computation, and hence to accelerating other power system applications based on power flow computation, such as optimal power flow, contingency analysis, etc. This dissertation focuses on the exploration of iterative linear solvers and applicable preconditioners, with graphic processing unit (GPU) implementations to achieve performance improvement on the linear computations in power flow computations. An iterative conjugate gradient solver with Chebyshev preconditioner is studied first, and then the preconditioner is extended to a two-step preconditioner. At last, the conjugate gradient solver and the two-step preconditioner are integrated with MATPOWER to solve the practical fast decoupled load flow (FDPF), and an inexact linear solution method is proposed to further save the runtime of FDPF. Performance improvement is reported by applying these methods and GPU-implementation. The final complete GPU-based FDPF with inexact linear solving can achieve nearly 3x performance improvement over the MATPOWER implementation for a test system with 11,624 buses. A supporting study including a quick estimation of the largest eigenvalue of the linear system which is required by the Chebyshev preconditioner is presented as well. This dissertation demonstrates the potential of using GPU with scalable methods in power flow computation

    On-line cascading event tracking and avoidance decision support tool

    Get PDF
    Cascading outages in power systems are costly events that power system operators and planners actively seek to avoid. Such events can quickly result in power outages for millions of customers. Although it is unreasonable to claim that blackouts can be completely prevented, we can nonetheless reduce the frequency and impact of such high consequence events. Power operators can take actions if they have the right information provided by tools for monitoring and managing the risk of cascading outages. Such tools are being developed in this research project by identifying contingencies that could initiate cascading outages and by determining operator actions to avoid the start of a cascade.;A key to cascading outage defense is the level of grid operator situational awareness. Severe disturbances and complex unfolding of post-disturbance phenomena, including interdependent events, demand critical actions to be taken on the part of the operators, thus making operators dependent on decision support tools and automatic controls. In other industries (e.g., airline, nuclear, process control), control operators employ computational capabilities that help them predict system response and identify corrective actions. Power system operators should have a similar capability with online simulation tools.;To create an online simulator to help operators identify the potential for and actions to avoid cascades, we developed a systematic way to identify power system initiating contingencies for operational use. The work extends the conventional contingency list by including a subset of high-order contingencies identified through topology processing. The contingencies are assessed via an online, mid-term simulator, designed to provide generalized, event-based, corrective control and decision support for operators with very high computational efficiency. Speed enhancement is obtained algorithmically by employing a multi-frontal linear solver within an implicit integration scheme. The contingency selection and simulation capabilities were illustrated on two systems: a test system with six generators and the IEEE RTS-96 with 33 generators. Comparisons with commercial grade simulators indicate the developed simulator is accurate and fast

    A preconditioned iterative solver for dynamic simulation of power systems

    No full text
    In this paper the General Minimal Residual (GMRES) is applied for the dynamic simulation of a power system. GMRES is an iterative method belonging to the class of conjugate gradient methods which is well suited for parallelization and easily programmable. When used with an appropriate preconditioner speed ups are considerable compared to the LU factorisation method. Results on a workstation as well as a supercomputer are presented for a 10 machine 39 bus system to illustrate the speed ups
    corecore