1,014 research outputs found

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    Adaptive Streaming in P2P Live Video Systems: A Distributed Rate Control Approach

    Get PDF
    Dynamic Adaptive Streaming over HTTP (DASH) is a recently proposed standard that offers different versions of the same media content to adapt the delivery process over the Internet to dynamic bandwidth fluctuations and different user device capabilities. The peer-to-peer (P2P) paradigm for video streaming allows to leverage the cooperation among peers, guaranteeing to serve every video request with increased scalability and reduced cost. We propose to combine these two approaches in a P2P-DASH architecture, exploiting the potentiality of both. The new platform is made of several swarms, and a different DASH representation is streamed within each of them; unlike client-server DASH architectures, where each client autonomously selects which version to download according to current network conditions and to its device resources, we put forth a new rate control strategy implemented at peer site to maintain a good viewing quality to the local user and to simultaneously guarantee the successful operation of the P2P swarms. The effectiveness of the solution is demonstrated through simulation and it indicates that the P2P-DASH platform is able to warrant its users a very good performance, much more satisfying than in a conventional P2P environment where DASH is not employed. Through a comparison with a reference DASH system modeled via the Integer Linear Programming (ILP) approach, the new system is shown to outperform such reference architecture. To further validate the proposal, both in terms of robustness and scalability, system behavior is investigated in the critical condition of a flash crowd, showing that the strong upsurge of new users can be successfully revealed and gradually accommodated.Comment: 12 pages, 17 figures, this work has been submitted to the IEEE journal on selected Area in Communication

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    On dynamic server provisioning in multichannel P2P live streaming

    Get PDF
    To guarantee the streaming quality in live peer-to-peer (P2P) streaming channels, it is preferable to provision adequate levels of upload capacities at dedicated streaming servers, compensating for peer instability and time-varying peer upload bandwidth availability. Most commercial P2P streaming systems have resorted to the practice of overprovisioning a fixed amount of upload capacity on streaming servers. In this paper, we have performed a detailed analysis on 10 months of run-time traces from UUSee, a commercial P2P streaming system, and observed that available server capacities are not able to keep up with the increasing demand by hundreds of channels. We propose a novel online server capacity provisioning algorithm that proactively adjusts server capacities available to each of the concurrent channels, such that the supply of server bandwidth in each channel dynamically adapts to the forecasted demand, taking into account the number of peers, the streaming quality, and the channel priority. The algorithm is able to learn over time, has full Internet service provider (ISP) awareness to maximally constrain P2P traffic within ISP boundaries, and can provide differentiated streaming qualities to different channels by manipulating their priorities. To evaluate its effectiveness, our experiments are based on an implementation of the algorithm, which replays real-world traces. © 2011 IEEE.published_or_final_versio

    Ad-hoc Stream Adaptive Protocol

    Get PDF
    With the growing market of smart-phones, sophisticated applications that do extensive computation are common on mobile platform; and with consumers’ high expectation of technologies to stay connected on the go, academic researchers and industries have been making efforts to find ways to stream multimedia contents to mobile devices. However, the restricted wireless channel bandwidth, unstable nature of wireless channels, and unpredictable nature of mobility, has been the major road block for wireless streaming advance forward. In this paper, various recent studies on mobility and P2P system proposal are explained and analyzed, and propose a new design based on existing P2P systems, aimed to solve the wireless and mobility issues

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u
    corecore