18 research outputs found

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment

    Is broadband now essential to sustain the environment?

    Full text link

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin

    On the Fundamentals of Stochastic Spatial Modeling and Analysis of Wireless Networks and its Impact to Channel Losses

    Get PDF
    With the rapid evolution of wireless networking, it becomes vital to ensure transmission reliability, enhanced connectivity, and efficient resource utilization. One possible pathway for gaining insight into these critical requirements would be to explore the spatial geometry of the network. However, tractably characterizing the actual position of nodes for large wireless networks (LWNs) is technically unfeasible. Thus, stochastical spatial modeling is commonly considered for emulating the random pattern of mobile users. As a result, the concept of random geometry is gaining attention in the field of cellular systems in order to analytically extract hidden features and properties useful for assessing the performance of networks. Meanwhile, the large-scale fading between interacting nodes is the most fundamental element in radio communications, responsible for weakening the propagation, and thus worsening the service quality. Given the importance of channel losses in general, and the inevitability of random networks in real-life situations, it was then natural to merge these two paradigms together in order to obtain an improved stochastical model for the large-scale fading. Therefore, in exact closed-form notation, we generically derived the large-scale fading distributions between a reference base-station and an arbitrary node for uni-cellular (UCN), multi-cellular (MCN), and Gaussian random network models. In fact, we for the first time provided explicit formulations that considered at once: the lattice profile, the users’ random geometry, the spatial intensity, the effect of the far-field phenomenon, the path-loss behavior, and the stochastic impact of channel scatters. Overall, the results can be useful for analyzing and designing LWNs through the evaluation of performance indicators. Moreover, we conceptualized a straightforward and flexible approach for random spatial inhomogeneity by proposing the area-specific deployment (ASD) principle, which takes into account the clustering tendency of users. In fact, the ASD method has the advantage of achieving a more realistic deployment based on limited planning inputs, while still preserving the stochastic character of users’ position. We then applied this inhomogeneous technique to different circumstances, and thus developed three spatial-level network simulator algorithms for: controlled/uncontrolled UCN, and MCN deployments

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF
    corecore