18 research outputs found

    No-Regret Learning in Extensive-Form Games with Imperfect Recall

    Full text link
    Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFR's regret bounds depend on the requirement of perfect recall: players always remember information that was revealed to them and the order in which it was revealed. In games without perfect recall, however, CFR's guarantees do not apply. In this paper, we present the first regret bound for CFR when applied to a general class of games with imperfect recall. In addition, we show that CFR applied to any abstraction belonging to our general class results in a regret bound not just for the abstract game, but for the full game as well. We verify our theory and show how imperfect recall can be used to trade a small increase in regret for a significant reduction in memory in three domains: die-roll poker, phantom tic-tac-toe, and Bluff.Comment: 21 pages, 4 figures, expanded version of article to appear in Proceedings of the Twenty-Ninth International Conference on Machine Learnin

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    Imperfect-Recall Abstractions with Bounds in Games

    Full text link
    Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium computation in incomplete-information games. However, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific guarantees on solution quality are known. In this paper, we show the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Further, our analysis is tighter in two ways, each of which can lead to an exponential reduction in the solution quality error bound. We then show that for extensive-form games that satisfy certain properties, the problem of computing a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems. If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric space. Conversely, if this condition is not satisfied, we show that the input does not form a metric space. Finally, we use these results to experimentally investigate the quality of our bound for single-level abstraction

    Solving Large Extensive-Form Games with Strategy Constraints

    Full text link
    Extensive-form games are a common model for multiagent interactions with imperfect information. In two-player zero-sum games, the typical solution concept is a Nash equilibrium over the unconstrained strategy set for each player. In many situations, however, we would like to constrain the set of possible strategies. For example, constraints are a natural way to model limited resources, risk mitigation, safety, consistency with past observations of behavior, or other secondary objectives for an agent. In small games, optimal strategies under linear constraints can be found by solving a linear program; however, state-of-the-art algorithms for solving large games cannot handle general constraints. In this work we introduce a generalized form of Counterfactual Regret Minimization that provably finds optimal strategies under any feasible set of convex constraints. We demonstrate the effectiveness of our algorithm for finding strategies that mitigate risk in security games, and for opponent modeling in poker games when given only partial observations of private information.Comment: Appeared in AAAI 201

    A Bridge between Polynomial Optimization and Games with Imperfect Recall

    Full text link
    We provide several positive and negative complexity results for solving games with imperfect recall. Using a one-to-one correspondence between these games on one side and multivariate polynomials on the other side, we show that solving games with imperfect recall is as hard as solving certain problems of the first order theory of reals. We establish square root sum hardness even for the specific class of A-loss games. On the positive side, we find restrictions on games and strategies motivated by Bridge bidding that give polynomial-time complexity

    On Imperfect Recall in Multi-Agent Influence Diagrams

    Full text link
    Multi-agent influence diagrams (MAIDs) are a popular game-theoretic model based on Bayesian networks. In some settings, MAIDs offer significant advantages over extensive-form game representations. Previous work on MAIDs has assumed that agents employ behavioural policies, which set independent conditional probability distributions over actions for each of their decisions. In settings with imperfect recall, however, a Nash equilibrium in behavioural policies may not exist. We overcome this by showing how to solve MAIDs with forgetful and absent-minded agents using mixed policies and two types of correlated equilibrium. We also analyse the computational complexity of key decision problems in MAIDs, and explore tractable cases. Finally, we describe applications of MAIDs to Markov games and team situations, where imperfect recall is often unavoidable.Comment: In Proceedings TARK 2023, arXiv:2307.0400

    Lossy stochastic game abstraction with bounds

    Full text link
    corecore