21,383 research outputs found

    Polygon Exploration with Time-Discrete Vision

    Full text link
    With the advent of autonomous robots with two- and three-dimensional scanning capabilities, classical visibility-based exploration methods from computational geometry have gained in practical importance. However, real-life laser scanning of useful accuracy does not allow the robot to scan continuously while in motion; instead, it has to stop each time it surveys its environment. This requirement was studied by Fekete, Klein and Nuechter for the subproblem of looking around a corner, but until now has not been considered in an online setting for whole polygonal regions. We give the first algorithmic results for this important algorithmic problem that combines stationary art gallery-type aspects with watchman-type issues in an online scenario: We demonstrate that even for orthoconvex polygons, a competitive strategy can be achieved only for limited aspect ratio A (the ratio of the maximum and minimum edge length of the polygon), i.e., for a given lower bound on the size of an edge; we give a matching upper bound by providing an O(log A)-competitive strategy for simple rectilinear polygons, using the assumption that each edge of the polygon has to be fully visible from some scan point.Comment: 28 pages, 17 figures, 2 photographs, 3 tables, Latex. Updated some details (title, figures and text) for final journal revision, including explicit assumption of full edge visibilit

    The Partial Visibility Representation Extension Problem

    Full text link
    For a graph GG, a function ψ\psi is called a \emph{bar visibility representation} of GG when for each vertex v∈V(G)v \in V(G), ψ(v)\psi(v) is a horizontal line segment (\emph{bar}) and uv∈E(G)uv \in E(G) iff there is an unobstructed, vertical, ε\varepsilon-wide line of sight between ψ(u)\psi(u) and ψ(v)\psi(v). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph GG, a bar visibility representation ψ\psi of GG, additionally, puts the bar ψ(u)\psi(u) strictly below the bar ψ(v)\psi(v) for each directed edge (u,v)(u,v) of GG. We study a generalization of the recognition problem where a function ψ′\psi' defined on a subset V′V' of V(G)V(G) is given and the question is whether there is a bar visibility representation ψ\psi of GG with ψ(v)=ψ′(v)\psi(v) = \psi'(v) for every v∈V′v \in V'. We show that for undirected graphs this problem together with closely related problems are \NP-complete, but for certain cases involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Multi-Agent Deployment for Visibility Coverage in Polygonal Environments with Holes

    Full text link
    This article presents a distributed algorithm for a group of robotic agents with omnidirectional vision to deploy into nonconvex polygonal environments with holes. Agents begin deployment from a common point, possess no prior knowledge of the environment, and operate only under line-of-sight sensing and communication. The objective of the deployment is for the agents to achieve full visibility coverage of the environment while maintaining line-of-sight connectivity with each other. This is achieved by incrementally partitioning the environment into distinct regions, each completely visible from some agent. Proofs are given of (i) convergence, (ii) upper bounds on the time and number of agents required, and (iii) bounds on the memory and communication complexity. Simulation results and description of robust extensions are also included
    • …
    corecore