66 research outputs found

    Optimization for Maximizing Sum Secrecy Rate in SWIPT-enabled NOMA Systems

    Get PDF
    OAPA In this paper, we study secrecy simultaneous wireless information and power transfer (SWIPT) in downlink nonorthogonal multiple access (NOMA) systems comprising a base station (BS), multiple information receivers (IRs), and multiple energy receivers (ERs) that have potential to wiretap the IRs. The goal of this paper is to maximize the sum secrecy rate (SSR) of the system subject to the individual IR’s minimum data rate requirement and the individual ER’s minimum harvested energy requirement. The corresponding problem involves resource allocation via max-min function, which is non-convex and difficult to solve directly. In order to tackle this, we first transform the original non-convex problem to a sequence of convex subproblems which can be solved simultaneously. Hence, a closedform solution of the optimal power allocation policy is derived based on the Karush-Kuhn-Tucker (KKT) conditions. Numerical results validate the theoretical findings and demonstrate that significant performance gain over the orthogonal multiple access (OMA) scheme in terms of SSR can be achieved by the proposed algorithm in a SWIPT-enabled NOMA system

    TEMPORAL CONNECTIVITY AS A MEASURE OF ROBUSTNESS IN NONORTHOGONAL MULTIPLE ACCESS WIRELESS NETWORKS

    Get PDF
    Supplementary Material has been provided, but is not yet published.Nonorthogonal multiple access (NOMA) is recognized as an important technology to meet the performance requirements of fifth generation (5G) and beyond 5G (B5G) wireless networks. Through the technique of overloading, NOMA has the potential to support higher connection densities, increased spectral efficiency, and lower latency than orthogonal multiple access. The role of NOMA in 5G/B5G wireless networks necessitates a clear understanding of how overloading variability affects network robustness. This dissertation considers the relationship between variable overloading and network robustness through the lens of temporal network theory, where robustness is measured through the evolution of temporal connectivity between network devices (ND). We develop a NOMA temporal graph model and stochastic temporal component framework to characterize time-varying network connectivity as a function of NOMA overloading. The analysis is extended to derive stochastic expressions and probability mass functions for unidirectional connectivity, bidirectional connectivity, the inter-event time between unidirectional connectivity, and the minimum time required for bidirectional connectivity between all NDs. We test the accuracy of our analytical results through numerical simulations. Our results provide an overloading-based characterization of time-varying network robustness that is generalizable to any underlying NOMA implementation.National Security Agency, Fort George G. Meade, MD 20775Major, United States Marine CorpsApproved for public release. Distribution is unlimited

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions
    • …
    corecore