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ABSTRACT 

 Nonorthogonal multiple access (NOMA) is recognized as an important 

technology to meet the performance requirements of fifth generation (5G) and beyond 5G 

(B5G) wireless networks. Through the technique of overloading, NOMA has the 

potential to support higher connection densities, increased spectral efficiency, and lower 

latency than orthogonal multiple access. The role of NOMA in 5G/B5G wireless 

networks necessitates a clear understanding of how overloading variability affects 

network robustness. This dissertation considers the relationship between variable 

overloading and network robustness through the lens of temporal network theory, where 

robustness is measured through the evolution of temporal connectivity between network 

devices (ND). We develop a NOMA temporal graph model and stochastic temporal 

component framework to characterize time-varying network connectivity as a function of 

NOMA overloading. The analysis is extended to derive stochastic expressions and 

probability mass functions for unidirectional connectivity, bidirectional connectivity, the 

inter-event time between unidirectional connectivity, and the minimum time required for 

bidirectional connectivity between all NDs. We test the accuracy of our analytical results 

through numerical simulations. Our results provide an overloading-based characterization 

of time-varying network robustness that is generalizable to any underlying NOMA 

implementation. 
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CHAPTER 1:
Introduction

Mobile wireless networks are a pervasive component of modern life. At the conclusion
of 2021, the number of mobile subscribers exceeded the global population by a ratio of
approximately five mobile subscriptions for every four people [1], [2]. In conjunction with
core networks, wireless networks provide a foundation for the creation, sustainment, and
evolution of many other networks (e.g., technological, information, and social) that are
endemic to the connection-centric human experience. Thus, the methods by which wireless
networks enable connectivity, and the robustness of that connectivity to parametric varia-
tions, must be studied and understood. This dissertation endeavors to make a contribution to
that end through a study of network connectivity in nonorthogonal multiple access (NOMA)
wireless networks. The following sections discuss the overarching context in which this re-
search unfolds and trace the through-line of mobile wireless network development to the
motivation, guiding question, and methodological approach of this research.

1.1 Research Context
Before proceeding into the heart of this research, it is important to consider the context
in which it is conducted. Many investigations into wireless networks occur within the
domain of electrical engineering. This is evident from the significant volume of wireless
network research compiled by the various communities within the Institute of Electrical
and Electronics Engineers (IEEE). In contrast, this research effort takes place within the
domain of information science. This distinction raises two questions: what is information
science, and how does an information science investigation of wireless networks differ from
electrical engineering?

1.1.1 What is Information Science?
Information, like most concepts and ideas, does not exist in isolation. Rather, as explained
by Russell Ackoff, information exists as part of a hierarchy, beginning with data that
is processed into information [3]. Pieces of information are placed in relationships to
form knowledge, and knowledge is learned to yield understanding. Finally, understanding
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is coupled with value-based judgements to culminate in wisdom [3]. As a result of the
hierarchical relationship, information science draws on a diverse set of disciplines depending
on the aspect of information under study. The broad scope of information science is well-
articulated in Borko’s discussion, where he contends that,

Information science is that discipline that investigates the properties and be-
havior of information, the forces governing the flow o f i nformation, and the 
means of processing information for optimum accessibility and usability. It is 
concerned with the body of knowledge relating to the origination, collection, or-
ganization, storage, retrieval, interpretation, transmission, transformation, and 
utilization of information. This includes the investigation of information repre-
sentations in both natural and artificial systems, the use of codes for efficient 
message transmission, and the study of information processing devices and 
techniques such as computers and their programming systems. It is an interdis-
ciplinary sciences derived from and related to such fields as mathematics, logic, 
linguistics, psychology, computer technology, operations research, the graphic 
arts, communications, library science, management, and other similar fields. 
It has both a pure science component, which inquires into the subject with-
out regard to application, and an applied science component, which develops 
services and products. [4, p. 3]

Notice that, thoughAckoff’s discussion came over two decades later, Borko’s enumeration of
the bodies of knowledge with which information science is concerned implicitly recognizes
Ackoff’s hierarchy. For example, the origination and transmission of information relate to
data. The interpretation, transformation, and utilization of information relate to knowledge
and understanding. Borko goes on to explain that his definition is complicated “because
the subject matter is complex and multidimensional, and the definition is intended to be
all-encompassing” [4, p. 3]. The wide range of disciplines in information science reflect the
breadth of inquiry required to consider information in relation to the other aspects of human
and machine cognition.

It is certainly to Borko’s credit that, despite the formulation of his definition in 1968,
the flexibility in his vision has accommodated the technological advances of the past
54 years. Wireless networking is a clear example as it focuses on artificial systems that
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transmit information represented as data signals, and is often considered through the fields
of mathematics, computer technology, and communications (though the terminology has
become more specialized over time). Thus, I adopt Borko’s definition, recognizing its
relationship to Ackoff’s hierarchy, as the information science context for this research into
NOMA wireless networks.

1.1.2 Information Science and Electrical Engineering
The expansive definition of information sciencemight suggest that no clear distinction exists
between an electrical engineering and information science approach to wireless networking.
However, this is not the case. Though both are decidedly engaged in the development of
theory, they differ in the questions that guide their pursuits. The electrical engineer develops
theories and knowledge in pursuit of a system design objective, asking “How can I achieve
design objective 𝑥?” The relationships described in the resulting theories are a means to
an end. In contrast, the information scientist is guided by questions that seek to develop
theories and knowledge as an end, such as “What is the relationship between 𝑥 and 𝑦?” As
discussed in the following sections, this research attempts to span the boundaries of this
distinction by developing theory as an end with the intent that it provides benefit to those
who may further it as a means.

Differentiating between scientific and engineering disciplines by the nature of the questions
asked places my views at odds with the end of Borko’s definition, which draws a distinction
between pure and applied information science. Inmy view, the distinction is actually between
pure information science and various engineering disciplines (e.g., electrical, software).
This idea extends to applied science writ large. Applied science is engineering, and the
the applied scientist is an engineer. Once the purpose of theory design is bound to the
design of an artifact (a product or service in Borko’s words), an engineering design effort is
surely underway.1 While I suspect this idea may be met with disagreement from scientists
and engineers alike, the important aspect on which to focus is the underlying commonality
between the scientist and engineer. As Simon keenly observed, both are fundamentally
engaged in design, and it is in this common space in which I hope this dissertation finds use
to readers of many disciplines [5].

1This idea does not suggest that all engineering efforts include theory/knowledge generation. That is, all
engineering is not applied science.

3



1.2 The Evolution of Mobile Wireless Networks
The evolution of radio frequency (RF) wireless networks is marked by a continual increase
in network performance to meet user requirements. This holds true for mobile wireless
networks as each successive generation has sought to outpace requirements through new
technologies and capabilities.

1.2.1 The Past
In the early 1980s, the first generation (1G) of mobile wireless technology brought mobile
analog telephony to the general public. The second generation (2G) made numerous ad-
vances throughout the 1990s including the transition from analog to digital transmissions,
the introduction of circuit-switched data transmission (e.g., Short Message Service), and
a shift to packet-switched data transmission (e.g., General Packet Radio Services), which
opened the door for low data rate applications (e.g., email). However, the packet-switched
data services were still supported by narrowband transmissions. In the early 2000s, third
generation (3G) wireless technology advanced from narrowband to mobile broadband tech-
nology that supported Internet Protocol (IP)-based services previously restricted to fixed
broadband internet connections. The fourth generation (4G) of mobile wireless technology,
of which the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is
the dominant standard, deployed circa 2010 and provided the increased throughput and de-
creased latency necessary to support the increasingly demanding application requirements
that accompanied the transition to smart phones over the next decade [6]–[9].

1.2.2 The Present
The present day is witness to the initial deployment of commercial 3GPP fifth genera-
tion (5G) New Radio (NR) wireless networks, which began with South Korea’s SK Telecom
in April 2019 [10]. A comparison of the performance targets set by the Radiocommunica-
tion Sector of the International Telecommunications Union (ITU) for 4G and 5G networks
is depicted in Figure 1.1. International Mobile Telecommunications (IMT)-Advanced (de-
picted in light green) corresponds to 4G networks, and IMT-2020 (depicted in dark green)
corresponds to 5G networks. It is clear that 5G represents a significant step beyond 4G.
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Figure 1.1. Comparison of IMT-2020 and IMT-Advanced performance per-
formance requirements. Source: [11].

Fifth generation (5G) networks are largely distinguished from4G through the diversity of use
cases, which are broadly classified in the 2015 ITU-RRecommendationM.2083 as enhanced
mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-
reliable and low-latency communication (URLLC) [11]. The individual user experience
dominates the eMBB use cases where the main objective is supporting high data rate
applications, such as streaming 4k video, over a range of mobility and coverage area
conditions. Conversely, mMTC use cases are generally characterized by large numbers
of connected devices with lower data rate requirements, such as the Internet of Things
(IoT), where maximizing connection density and device energy efficiency are of paramount
importance. Use cases in the URLLC categorymay have elements of eMBB andmMTC, but
are set apart by their stringent latency and reliability requirements, such as automated control
systems and transportation safety [7], [12]. Each of these use case classes correspond to a
different importance level for the IMT-2020 performance metrics, as depicted in Figure 1.2.
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Figure 1.2. Mapping of IMT-2020 use cases to the relative importance of
IMT-2020 performance metrics. Source [11].

1.2.3 The Future
While 5G networks continue their initial deployment, the research and development of
beyond 5G (B5G)/sixth generation (6G) wireless networks is underway [13]. The vision for
6G wireless networks generally calls for an order of magnitude improvement over 5G in the
key performancemetrics of throughput, latency, connection density, reliability, andmobility.
Example use cases for 6G networks include holographic communications, tactile and haptic
internet applications (e.g., remote robotic surgery), and the Internet of Everything [14].
Supporting these diverse use cases requires a versatile network capable of terabit/second
throughput, sub-millisecond latency, and connection densities of 10 million devices per
km2.
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1.3 Motivation
The network performance gains in each generation of mobile wireless technology discussed
in Section 1.2 are supported by progress in a variety of technologies, including medium
access control (MAC). While the advances in MAC technology for 1G through 4G gen-
erally correspond to a primary objective (e.g., transition from circuit-switching to packet
switching, transition from narrowband to broadband), the myriad ambitious performance
requirements for 5G and B5G/6G require a MAC design that supports multiple objectives.

Among the variety of nascentMACapproaches for next generationmultiple access (NGMA)
is NOMA. The central concept in NOMA is overloading, which is the assignment of
more than one network device (ND) to transmit or receive RF signals using the same
time-frequency resources, or resource blocks (RBs). Through overloading, NOMA has
the potential to support the increased throughput, higher connection densities, increased
spectral efficiency, and lower latency of future 5G and B5G/6G networks [15]–[17].

The 3GPP Radio Access Network Technical Specification Group (TSG-RAN) conducted a
formal study of NOMA for inclusion in 3GPP NR in 2018 [18]. The results of the study,
and recorded discussion from TSG-RAN Meeting 82, suggest that meeting participants
did not believe that NOMA demonstrated sufficient performance gains, when compared to
multiple inputmultiple output (MIMO) technologies, towarrant near-term standardization in
NR [19]–[21]. Specifically, massiveMIMO (mMIMO) andmulti-userMIMO (MU-MIMO)
are widely accepted multi-antenna approaches to meet IMT-2020 requirements in the beam-
centricNRdesign [7], [21].While this perspectivemay be valid formobilewireless networks
supported by fixed infrastructure, it fails to consider the increasing attention given to non-
terrestrial network (NTN) deployments that are partially or entirely composed of mobile
base stations (MBSs), such as low-altitude unmanned aerial vehicles (UAVs) [22]–[27]. The
MBS-to-ground communications channel is generally characterized by a strong line-of-sight
component that increases channel correlation and reduces the requisite diversity for spatial
multiplexing [24]. Additionally, the size, weight, and power constraints of some MBSs may
prevent them from supporting mMIMO arrays in the sub-6 GHz frequency range.

Consider the 64-element mMIMO array from [28] operating at a carrier frequency of 6
GHz or below. This frequency range is important to support a larger coverage area from
the MBS, and to provide connectivity with NDs that may not have line-of-sight to the
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MBS [28]. Approximating the speed of light as 3 × 108 m/s, the wavelength of a 6 GHz
carrier is 50 mm. An 8 × 8 element planar array with 1/2 wavelength elements and 1/2
wavelength separation between elements requires 375 mm × 375 mm, or approximately
1.5 ft2, of space on the MBS. This space requirement will increase with the addition of
antenna elements or reduction in frequency. Additionally, realizing the full MU-MIMO
potential of the array that is enabled by digital beamforming requires a digital-to-analog
converter (DAC) for every antenna element. This fully digital configuration allows the array
to simultaneously support the same number of network devices as array elements in each
RB, but at the cost of increased space and power consumption from the DACs [7], [28].
While these constraints may be easily accommodated by a static base station, they could
prove challenging to implement on smaller MBSs with other competing objectives such as
maximizing time-on-station. Conversely, implementing NOMA does not impose additional
array space constraints on the MBS.

NTN wireless networks supported by MBSs could be deployed in a number of scenarios
such as augmentation to fixed infrastructure experiencing high traffic volume (large public
event), providing service to a location at which fixed infrastructure has failed (natural
disaster response), or providing service in a location not served by fixed infrastructure
(military operations2) [26], [29], [30]. In these scenarios, NOMA is particularly suited
for meeting massive access and low latency requirements for IoT and federated learning
applications that are unable to access centralized computing resources [16], [31]. Although
currently lacking momentum in the 3GPP NR standardization process, these use-cases
coupled with the potential challenges of mMIMO implementation in small MBSs suggest
that NOMA has a role to play in the evolution of 5G and B5G/6G wireless networks.

1.4 Research Overview
This section provides an overview of the research gap, purpose, guiding question, and
approach to theory development.

2An expanded discussion of specific applicability to the Marine Corps is provided in the appendix.

8



1.4.1 Research Gap
Information theoretic treatments of NOMA consider communications channel capacity
boundaries in the Broadcast and Multiple Access Channels. These exploratory studies pro-
vide an understanding of the best achievable transmissions rates in which the number of
users sharing a RB is arbitrarily large [32]–[34]. However, researchers exploring physical
implementations of NOMA have noted many practical considerations such as high receiver
complexity, variable channel conditions, minimum required transmission rates, and code-
book collision that suggest the number of NDs that can effectively use the same RB is
bounded and variable [20], [35]–[39]. Correspondingly, much of the NOMA literature in-
vestigates methods by which it can be employed to achieve IMT-2020 performance targets
under practical constraints; however, there is a general lack of analysis on the relationship
between bounded variable overloading and network connectivity [15], [18], [33], [40]–[43].
This research aims to address that gap.

1.4.2 Research Purpose and Guiding Question
As alluded to in Section 1.1, this research aims to span the boundary between the information
scientist and electrical engineer. Thus, the purpose of this research is to contribute to the
understanding of NOMAwireless networks through the development of a theoretical model
and analysis that inform their practical design. To that end, this research is guided by the
following question:

How does variable overloading affect robustness in NOMA wireless networks?

This question is approached through the theoretical lens of network science, with a particular
emphasis on temporal network theory, and considers robustness in terms of the time-varying
connectivity between NDs. In addition to achieving the expressed aims, we hope that the
results of this study will find applicability in a variety of isomorphic contexts across the
interdisciplinary fields of which information science is composed.

1.4.3 Theoretical Development
The evolutionary development of theory is at the core of this research effort. Informed
by the research gap in Section 1.4.1 and the design of NOMA networks to intentionally
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interfere, we consider the relationship between NOMA overloading and robustness from
the perspective of connectivity rather than throughput.

The connectivity between entities is a prominent focus of network science, which explores
network connectivity through graph-theoretic representations. In this context, we consider
the role of overloaded RB allocation in network connectivity and, taking inspiration from
interdependent network theory, conceptualize a graph-based NOMA system model that
represents the relationships between NDs, RBs, and a single base station (BS) in a NOMA
wireless network. Drawing from random graph theory and temporal network theory, we
develop the systemmodel into a mathematically formalized temporal network ensemble that
is suitable for time-varying connectivity analysis. The system model and temporal network
ensemble offer a novel theoretical perspective to investigate the relationship between variable
overloading and robustness, and provide the basis for subsequent theoretical contributions.

Building on the theoretical foundation of the system model, we proceed to consider the im-
plications for RB allocation and the corresponding effect on the probability of connectivity
between NDs. We recognize the system model assumptions and parameters lend RB alloca-
tion to representation as a Bernoulli random process, and this insight drives the stochastic
analysis of connectivity between NDs. Probabilistic connectivity is initially considered
through ND membership in temporal network components, resulting in the development
of a stochastic temporal component framework. This framework provides a theoretical
characterization of the expected type of connectivity between NDs over time. However, it
becomes clear at the conclusion of the temporal component framework analysis that queued
messages from one ND to another (which are not represented in the temporal component
framework) will have a significant impact on temporal connectivity. This realization shifts
the research focus from temporal components to directed connectivity between ND pairs,
and leads directly to the development of a mathematical model of connectivity that accounts
for queued messages.

After formalizing the mathematical model of connectivity, we consider many different
questions that each have the potential to support NOMA network design for the motivating
use-cases.

1. What is the probability that ND 𝑖 connects to ND 𝑗 at time 𝑡?
2. When should we expect that ND 𝑖 first connects to ND 𝑗?
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3. How much time passes between a connection from ND 𝑖 to ND 𝑗 and the next?
4. When should we expect that ND 𝑖 and ND 𝑗 are first bidirectionally connected?
5. How quickly can all NDs in the network connect, and how likely is this to occur?

The first and third questions support design for ND density and duty cycle, while the second,
fourth and fifth questions all support design for decentralized algorithm convergence among
NDs. The results from these investigations are expressed as stochastic mathematical equa-
tions that each contribute new theoretical insights about the impact of variable overloading
on NOMA network robustness.

Theory Development Cycle
Although the presentation of theory development and simulation validation in Chapters 5
and 6 is sequential, this process occurs in a cyclic manner similar to the spiral development
method for computer software. Each cycle is composed of an analytical and simulation
phase. The analytical phase considers the enumerated questions (about evolving connectiv-
ity between NDs) in terms of the NOMA system model formalism and derives a stochastic
expression, or probability mass function (PMF), as a result. Each of these analytical results
is a theory of how temporal connectivity evolves in the network, as a function of NOMA
overloading. The simulation phase tests the internal validity of the theory by instantiating
the mathematical formalism in the MATLAB® technical computing environment and con-
ducting trials to determine if the connectivity behaves as the theoretical expressions predict.
The results and insights gained during one theory development cycle often generate the
question that begins the next. In this way, the research effort is self-sustaining as each new
cycle leads to new areas of exploration.

The following section outlines the specific theoretical contributions of this research, along
with the chapter and section in which they occur.

1.5 Contributions
The theoretical contributions resulting from this research are summarized in Table 1.1. We
believe the NOMA graph model, temporal network ensemble, and stochastic characteri-
zations of time-varying network connectivity simultaneously contribute to the bodies of
wireless networking and temporal network theory research. Sections marked by (*) denote
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Table 1.1. Theoretical Contributions of Research.

Section Contribution
Ch. 3.1* NOMA Graph Model
Ch. 3.2* Temporal Network Ensemble
Ch. 4* Stochastic Temporal Component Framework
Ch. 5.2† Probability of Temporal Connectivity in Each Frame
Ch. 5.3† Probability of Time to Initial Unidirectional Connectivity
Ch. 5.4 Probability of Time Window Between Unidirectional Connectivity
Ch. 5.5 Probability of Time to Initial Bidirectional Connectivity
Ch. 5.6* Probability of Minimum Time to Complete Bidirectional Connectivity

work that has been refereed and accepted at the 2022 Hawaii International Conference
on System Sciences, and sections marked by (†) denote work that has been refereed and
accepted at the 2022 IEEE International Conference on Communications.

1.6 Organization
The remainder of this dissertation is organized as follows. In Chapter 2, an overview of
multiple access (MA), temporal network theory, and related work is provided. In Chapter 3,
a temporal graph model of a NOMA wireless network is proposed, a temporal network
ensemble is developed, and the relationship to existing graph models is discussed. In
Chapter 4, the probability of RB allocation is considered, and an analytical framework
for temporal component analysis is developed. In Chapter 5, the relationship between
NOMA overloading and temporal connectivity between NDs is explored. In Chapter 6,
the consolidated simulation results from each theory development cycle are presented. In
Chapter 7, the dissertation is concluded with a brief review of contributions, limitations,
and suggestions for future work. A focused discussion of the Marine Corps relevance of
this research is provided in the appendix.
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CHAPTER 2:
Background and Related Work

This chapter reviews aspects of wireless multiple access, temporal network theory, and
related work to develop the requisite context for the remainder of the dissertation. First, a
brief overview of orthogonal multiple access schemes is provided to motivate the discussion
of NOMA. Subsequently, the definition of NOMA adopted in this research is presented
followed by an introduction to fundamental NOMA concepts. Next, temporal network
theory is introduced with a specific emphasis on temporal components. Finally, a review of
prior work related to this dissertation is provided.

2.1 Orthogonal Multiple Access
A basic function of MAC protocols is the management of resources in the time-, frequency-,
code-, and space-domain bywhich information is transmitted [15].Medium access protocols
designed to accommodate shared access to transmission resources by multiple NDs are
called MA schemes.

Multiple access technologies that separate ND transmissions in time, frequency, code, space,
or some combination thereof are classified as orthogonal multiple access (OMA) schemes.
In general, OMA is designed to prevent interference between NDs so that all transmissions
can be successfully received and decoded.

ManydifferentOMAapproaches exist, including frequency divisionmultiple access (FDMA),
time division multiple access (TDMA), code division multiple access (CDMA), space divi-
sionmultiple access (SDMA), and orthogonal frequency divisionmultiple access (OFDMA)
[8]. In FDMA, the available frequency spectrum is divided into channels that are allocated
to individual NDs for transmission and reception. Similarly, in TDMA, each ND is assigned
a specific time period during which it can transmit or receive over the entire frequency band.
In CDMA, NDs transmit at the same time across the entire frequency band, and orthogonal
spreading codes are employed to disambiguate their interfering signals. Similarly, SDMA
distinguishes ND signals through directional spatial beams transmitted at the same time
and frequency. OFDMA is a blend of FDMA and TDMA that combines RF channels with
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time periods to create time-frequency RBs, which are allocated to NDs for transmission and
reception [8], [33], [44]. A comparative illustration of these OMA schemes and an OFDMA
RB are depicted in Figure 2.1.

Figure 2.1. Comparison of different OMA schemes. Adapted from [44].

Despite the success of OMA approaches in managing interference while sharing transmis-
sions resources, the scalability of OMA to support increasing numbers of NDs is inherently 
limited by the orthogonality constraint (i.e., the total number of transmission resources) [33].
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2.2 Nonorthogonal Multiple Access
As alluded to in Chapter 1.3, NOMA is a family of MA approaches that allow multiple
NDs to transmit or receive RF signals using the same transmission resources. Depending on
the MA technology, transmission resources include some subset of time, frequency, code,
and space. Simultaneous use of the same transmission resources (employed by a given MA
technology) by more than one ND is called overloading, and the number of NDs sharing
these resources is the overloading ratio. A conceptual illustration of NOMA is provided in
Figure 2.2.

Figure 2.2. Conceptual view of NOMA schemes that is applicable for power-
domain or code-domain. Adapted from [44].

In contrast to OMA, NOMAoverloading explicitly induces RF interference between NDs by
design. Nonorthogonalmultiple access techniquesmitigate the intentional overloading inter-
ference through multi-user detection (MUD)methods broadly categorized as power-domain
or code-domain. Power-domain approaches differentiate between NDs using a combination
of direct superposition coding (SC) at the transmitter and successive interference cancella-
tion (SIC) at the receiver [45]. Code-domain schemes generally employmore complex forms
of SC, such as nonorthogonal low cross-correlation spreading sequences or interleaving,
and often achieve MUD through iterative detection methods (such as the message passing

15



algorithm) that may or may not be paired with SIC [46]–[50].

Similar to the views expressed in [34], this research broadly defines NOMA as any MA
approach that enables overloading. This includes those already defined as NOMA in the
literature, such as power-domain NOMA and code-domain NOMA, and other techniques
such as rate-splitting [51]. Despite the wide variety of NOMA approaches, overloading
is the central concept that opens the door for performance gains in aggregate throughput,
connection density, and spectral efficiency; thus, the overloading ratio is the key parameter
of interest, and the theoretical developments of this research are intended to be applicable
to any MA scheme for which an overloading ratio can be defined.

Given the generalizable intent of this inquiry, the subsequent sections sketch the concepts
of SC and SIC from the information theoretic perspective of the downlink (broadcast)
channel. They are not intended as a comprehensive review, but rather to provide intuition
for some of the fundamental concepts that permeate (individually or in concert) many
NOMA implementations across categories.

2.2.1 Multiuser Capacity in the Broadcast Channel
This section introduces SC and SIC via the capacity analysis of the broadcast (downlink)
channel. Unless otherwise attributed, all material in Section 2.2.1 is derived from Chapter
6 of [32] and the example in the last section is taken from [52].

Channel Capacity and Achievable Transmission Rate
Like all other wireless communications approaches, NOMA schemes are constrained by
Shannon’s channel capacity theorem [53], which states

𝐶 = 𝑊 log
(
1 + 𝑃

𝑁0𝑊

)
(2.1)

where 𝐶 is the channel capacity in bits/second, 𝑊 is bandwidth in Hz, 𝑃 is the received
signal power in Watts, and 𝑁0 is the power spectral density of additive white Gaussian noise
(AWGN) in Watts/Hz. The achievable transmission rate for any communications channel
cannot exceed this bound, including in multiuser channels that support communications
between more than two NDs. However, Tse and Vishwanath show in [32] that the sum rate
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capacity of multiuser communications channels employing NOMA schemes can exceed
that of OMA. This is achieved through a combination of SC and SIC.

Consider the downlink communications channel from a single BS to multiple NDs repre-
sented in baseband discrete-time by

𝑦𝑘 [𝑚] = ℎ𝑘𝑥 [𝑚] + 𝑤𝑘 [𝑚], (2.2)

where 𝑦𝑘 [𝑚] is the received signal by ND 𝑘 at time 𝑚, ℎ𝑘 is the complex channel gain for
ND 𝑘 , 𝑥 [𝑚] is the transmitted signal from the BS, and 𝑤𝑘 [𝑚] is AWGN [32]. Given the
BS has an average power constraint 𝑃 for each transmission period then, by the channel
capacity in Equation (2.1), the transmission rate of single ND 𝑘 is bounded by

𝑅𝑘 < 𝑊 log
(
1 + 𝑃 |ℎ𝑘 |

2

𝑁0𝑊

)
, (2.3)

where 𝑅𝑘 is the rate of ND 𝑘 in bits/second [32]. Extending this to the case of two NDs with
equal channel gains that share orthogonal transmissions resources yields the achievable
capacity region described in [32] as

𝑅1 + 𝑅2 < 𝑊 log
(
1 + 𝑃 |ℎ1 |

2

𝑁0𝑊

)
. (2.4)

This region, illustrated in Figure 2.3, includes all achievable rate pairs for both NDs and the
boundary demonstrates that the single ND channel capacity limit is the best achievable rate.
However, observing that both NDs have equal channel gains, Tse and Vishwanath explore
the idea that each ND is capable of decoding the signal of the other. In this case, if both
signals are simultaneously transmitted, NDs can decode and subtract interfering signals
from the aggregate to decode their own signal with less interference.
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Figure 2.3. Downlink capacity region of two NDs with |ℎ1 |= |ℎ2 | and 𝑊 = 1
Hz. Source: [32].

Superposition Coding and Successive Interference Cancellation
Summing the information of two or more signals into a single transmission is called
superposition coding. In the case of two NDs, the transmitted signal across the entire
bandwidth from [32] is

𝑥 [𝑚] = 𝑥1 [𝑚] + 𝑥2 [𝑚], (2.5)

and the transmission power is split between two NDs, 𝑃1 and 𝑃2 where, 𝑃1 + 𝑃2 = 𝑃. An
example of superposition coding using a quadrature phase shift keying (QPSK) modulation
constellation is depicted in Figure 2.4.
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Figure 2.4. Superposition coding example. The QPSK constellation of 𝑥2
(a) is superimposed on the constellation of 𝑥1 (b) to produce the combined
signal (c). Source: [32].

Successive interference cancellation is the process of decoding a signal from an aggregate
received signal (composed of other interfering signals and noise), subtracting the decoded
signal from the aggregate received signal, and proceeding to decode another signal from
the remaining aggregate received signal. In this way, signals are successively canceled from
the aggregate received signal, thereby reducing the interference until the desired signal is
decoded.An example of a superposed signal decoded through SIC is illustrated in Figure 2.5.
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Figure 2.5. Successive interference cancellation example. The received signal
of 𝑥1 is decoded first followed by the received signal of 𝑥2. Source: [32].

The rate equations describing multiple access schemes employing SC and SIC differ from
those that do not. Network device 2 treats the signal of ND 1 as noise, and the achievable
rate from [32] is

𝑅2 = 𝑊 log
(
1 + 𝑃2 |ℎ2 |2

𝑃1 |ℎ1 |2+𝑁0𝑊

)
. (2.6)

Network device 1 performs SIC: it decodes the signal 𝑥2 [𝑚], treating the rest of the signal
as noise, subtracts 𝑥2 [𝑚] from the aggregate received signal, and then decodes the desired
signal 𝑥1 [𝑚] without interference, yielding the achievable rate from [32] as

𝑅1 = 𝑊 log
(
1 + 𝑃1 |ℎ1 |

2

𝑁0𝑊

)
. (2.7)

The successful use of SIC with SC requires that each user signal is decoded in the order
of increasing complex channel gains (i.e., decoding must begin with the ND that has the
weakest channel gain). The transmitter selects rates for each ND that are decodable based
on the allocated transmission power and channel gain. Thus, if the ND with the weakest
channel gain is able to decode its signal, then all other NDs are also able to decode the
signal and subtract it from the aggregate. Equations (2.6) and (2.7) represent this process in
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the two-device case, and it extends for multiple rounds of cancellation in the multi-device
case. Notice this requires the transmitter and all NDs to know the complex channel gains
between each device and the transmitter.

Comparison of OMA and NOMA
The achievable rate equations in (2.6) and (2.7) provide a means to understand whether
employing SC and SIC for nonorthogonal resource sharing can provide any gain with
respect to orthogonal schemes. The transmission rates of two NDs employing an orthogonal
resource sharing scheme, as described in [32], are

𝑅1 = 𝛼𝑊 log
(
1 + 𝑃1 |ℎ1 |

2

𝛼𝑁0𝑊

)
, (2.8)

and
𝑅2 = (1 − 𝛼)𝑊 log

(
1 + 𝑃2 |ℎ2 |2

(1 − 𝛼)𝑁0𝑊

)
. (2.9)

In addition to the power constraint, 𝑃 = 𝑃1 + 𝑃2, the transmission rates of orthogonal
schemes must account for resource sharing, so let 𝛼 denote the allocation of resources
between NDs, where 0 ≤ 𝛼 ≤ 1. In this case, 𝛼 corresponds to bandwidth, but it gener-
alizes to any orthogonal transmission resources that must be shared (e.g., time). The total
transmission bandwidth available (𝑊) is fixed, so the allocation among the two NDs is 𝛼
and 1 − 𝛼, respectively. A contrast of resource sharing between OMA and NOMA during a
single transmission is shown in Figure 2.6 where |ℎ1 |2/𝑁0 and |ℎ2 |2/𝑁0 are constant during
the transmission and |ℎ1 |2> |ℎ2 |2. Figure 2.6(a) shows the power split and orthogonal band-
width allocation to each ND, while Figure 2.6(b) shows the power split and nonorthogonal
bandwidth allocation.
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Figure 2.6. Comparison of resource sharing in OMA and NOMA: (a) power
sharing and orthogonal resource sharing; (b) power sharing and nonorthog-
onal resource sharing. Source: [54].

The corresponding comparison of achievable rate pairs (𝑅1, 𝑅2) for OMA andNOMA in the
symmetric and asymmetric communications channel is depicted in Figure 2.7. The OMA
rates pairs are calculated by jointly optimizing the power split and resource sharing, while
the NOMA rate pairs are only constrained by the power split.
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Figure 2.7. Channel capacity comparison of OMA and NOMA in the downlink
AWGN channel: (a) symmetric channel; (b) asymmetric channel. Sources:
[33], [54].

In the case of a symmetric communications channel, with equal complex channel gains
|ℎ1 |2= |ℎ2 |2, the boundary of the achievable rate region is the same for OMA and NOMA.
In the case of an asymmetric communications channel, with unequal complex channel gains
|ℎ1 |2> |ℎ2 |2, the boundary of the achievable rate region for NOMA exceeds OMA in all
cases where both users have a rate greater than zero. Thus, NOMA does not provide any
gain in the symmetric channel, but does provide gains in the asymmetric channel. This is
because the difference in channel gains stratifies the NDs into the bandwidth-limited and
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power-limited signal regions. The bandwidth-limited device with the stronger channel gain
benefits by accessing the entire bandwidth while sacrificing some of the power allocation
from the transmitter. The power-limited device with the weaker channel gain benefits from
a larger power allocation by the transmitter, thereby increasing the effective bandwidth,
and a smaller interfering signal from the bandwidth-limited user due to the power split
constraint [52].

The results for AWGN uplink channels are similar to the downlink, where NOMA is shown
to be optimal in the symmetric and asymmetric cases, with many segments of the boundary
exceeding OMA in both cases. However, the rate equations differ due to the power constraint
imposed at each ND rather than a central BS.

2.2.2 NOMA Summary
In summary, the central idea of NOMA is overloading, in which multiple NDs simulta-
neously use the same transmission resources across all degrees of freedom. Superposition
coding and SIC are two of the fundamental concepts that enable overloading across a variety
of NOMA implementations. This research contributes to a generalized understanding of the
relationship between overloading and time-varying network robustness by abstracting the
physical NOMA implementation through network science. The following section introduces
the specific elements of network science that are pertinent to this research.

2.3 Temporal Network Theory
The analysis and results of this research are developed within the broad theoretical frame-
work of network science. In general, network science aim to understand the relationship
between the structure and function of a network [55], [56]. Networks represent relation-
ships, or connections, among entities. Correspondingly, the connectedness of a network
is a structural property of particular interest, and a common measure employed to map
from network structure to network function [55], [56]. Beginning with the representation
of networks as graphs, and extending through static networks to temporal networks, the
following discussion provides definitions of network connectedness and components that
are relevant to this investigation of NOMA wireless networks.
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2.3.1 Static Networks
Network science is largely underpinned by the mathematics of graph theory, where a
network is represented by a graph 𝐺 composed of a non-empty set of vertices, 𝑣 ∈ 𝑉 , and a
set of edges, 𝑒 ∈ 𝐸 [55], [57]. Vertices represent entities, edges represent the relationships
between those entities, and the entire network is denoted by 𝐺 (𝑉, 𝐸). In the parlance of
network science, vertices are called nodes and edges are called links. An example graph is
illustrated in Figure 2.8. The nodes in the graph, represented by the circles, could represent
people, airports, or internet routers. The links in the graph, represented by lines between
the circles, might represent friendships between people, routes between airports, or logical
IP connections between internet routers.

Figure 2.8. Example graph composed of six vertices and eight edges.

A network in which a link between two nodes represents a bidirectional relationship is
called an undirected network. Conversely, networks in which a link between two nodes
represents a directional relationship are called directed networks. Directed networks are
visually representedwith an indicator of the relationship direction, such as an arrow,whereas
undirected networks are often depicted the same as in Figure 2.8.

Node Adjacency
Two nodes that are joined by a link are adjacent to each other. For example, in Figure 2.8,
𝑣1 and 𝑣2 are adjacent. The links between all nodes in the network can be mathematically
represented through a adjacency matrix. The adjacency matrix of an undirected network A
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is an |𝑉 |×|𝑉 | matrix with elements, denoted 𝐴𝑖 𝑗 , defined by

𝐴𝑖 𝑗 =


1 if 𝑣𝑖 and 𝑣 𝑗 are adjacent

0 otherwise
, (2.10)

where |·| denotes the set cardinality [55]. The adjacency matrix for the undirected network
in Figure 2.8 is

A =



0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0


. (2.11)

The main diagonal ofA is composed of all zeros since no nodes are connected to themselves
(i.e., there are no self-links), and the matrix is symmetric about the main diagonal because
all links are bidirectional (i.e., the network is undirected).

The adjacency matrix A for a directed network is similar to an undirected network, but may
not be symmetric. Assuming that nodes do not connect to themselves, themain diagonal will
still be all zeros. However, the links in the network are from one node to another resulting
in the modified definition for the elements of A [55], given by

𝐴𝑖 𝑗 =


1 if there is a link from 𝑣𝑖 to 𝑣 𝑗

0 otherwise
. (2.12)

Notice that Equation (2.12) is the more general definition since Equation (2.10) can be
considered a special case of Equation (2.12) in which all links are bidirectional.

Walks and Paths
Inherent in the concept of a network is the idea of movement. An airline network describes
how a person might travel from one destination to another. A friendship network might
describe how information or affection moves from one person to another. Regardless of the
application, it is important to formally characterize the ability to move through or across
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the network. This is accomplished through the concepts of walks and paths.

A walk is a series of nodes in the network where each consecutive pair of nodes are
adjacent [57]. If the walk begins and ends at the same node, it is called a closed walk. If
the walk ends at any node other than the one at which it began, the walk is open [57]. The
number of links traversed during the walk is the length of the walk. Both nodes and links
may be revisited during a walk, so the walk length is not limited.

A path is a walk in which no nodes are repeated [57]. Similar to walks, the number of links
traversed on the path is the path length. A path between two nodes, 𝑖 and 𝑗 , with a path
length less than or equal to all other path lengths is a shortest path [57]. Paths, and shortest
paths, often have more utility than walks in network science since real networks often seek
to minimize the length of a walk (e.g. to reduce travel time in a transportation network,
or latency in a communications network) [55]. Thus, the remaining discussion will only
consider the role of paths in network connectedness.

Connectedness and Components
Two nodes 𝑖 and 𝑗 in an undirected network are connected if there is a path between
them [55], [56], [58]. An undirected network is connected if there is a path between every
pair of nodes in the network; otherwise, the network is disconnected [55], [56], [58]. The
network in Figure 2.8 is connected because each node has a path to every other node in the
network. If the links connecting the node pairs (𝑣3, 𝑣5) and (𝑣1, 𝑣4) are removed, the network
is disconnected.

Disconnected undirected networks are characterized by connected subgraphs, called com-
ponents, which are maximal subsets of nodes in which all nodes have a path to all oth-
ers [55], [56]. Continuing with the example that the adjacency between (𝑣3, 𝑣5) and (𝑣1, 𝑣4)
is removed, the graph is composed to two subgraphs with node sets 𝑉1 = {𝑣1, 𝑣2, 𝑣3} and
𝑉2 = {𝑣4, 𝑣5, 𝑣6}, as shown in Figure 2.9.
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Figure 2.9. Example disconnected graph resulting from the removal of con-
nections between node pairs. The disconnected graph is composed of two
subgraphs with node sets 𝑉1 = {𝑣1, 𝑣2, 𝑣3} and 𝑉2 = {𝑣4, 𝑣5, 𝑣6}.

The concepts of connectedness and network components extend to directed networks, in
which a link represents a directional relationship (sometimes called an arc). In directed
networks, connectedness is divided into two categories, strong and weak. As described
in [55], [56], two nodes 𝑖 and 𝑗 in a directed network are strongly connected if there is a
path from 𝑖 to 𝑗 and a path from 𝑗 to 𝑖. Similarly, two nodes 𝑖 and 𝑗 in a directed network
are weakly connected if there is a path from 𝑖 to 𝑗 or a path from 𝑗 to 𝑖. The categories
of node-level connectedness also give rise to multiple types of components in directed
networks, defined in [55] and [56] as:

• Strongly Connected Components: The strongly connected component of a node 𝑖 is
the set of nodes 𝑗 such that there exists a directed path from 𝑖 to 𝑗 and a directed path
from 𝑗 to 𝑖, ∀ 𝑗 .

• Weakly Connected Components: The weakly connected component of a node 𝑖 is the
set of nodes 𝑗 such that there exists a directed path from 𝑖 to 𝑗 or a directed path from
𝑗 to 𝑖, ∀ 𝑗 .

Notice that the weakly connected component is the same as a component that is derived by
treating the directed network as an undirected network.
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Bipartite Networks
One particular class of network that is important in this research is a bipartite network [55],
[56]. As the name suggests, a bipartite network is composed of two sets of nodes that are
partitioned from each other. Nodes in each set can only form links with nodes in the opposite
set. Bipartite networks are described by the notation 𝐺 (𝑈,𝑉, 𝐸), where 𝑈 is one node set,
𝑉 is the other node set, and 𝐸 is the set of links between nodes in 𝑈 and 𝑉 . An example
bipartite network is shown in Figure 2.10.

Figure 2.10. Example bipartite network composed of two node sets 𝑈 =

{𝑢1, 𝑢2} and 𝑉 = {𝑣1, 𝑣2, 𝑣3}, where links can only occur between nodes
from different note sets.

A common example of a bipartite network is the network describing actors and the films
in which they have appeared [55]. The actors form the nodes of one set, the films form the
nodes of the other node set, and the links connect actor nodes to the film nodes in which they
have appeared. The role of bipartite networks as they relate to NOMA wireless networks is
discussed in Chapter 3.1.

2.3.2 Temporal Networks
The ideas of connectedness and components discussed thus far apply to static networks.
Static networks are those in which the network structure does not change over time. Con-
versely, temporal networks (or time-varying networks) are those in which the network
structure does change over time. Temporal network theory extends static network theory to
incorporate the effects of a time-varying network structure, and the time-varying nature of
wireless communication networks lends itself to temporal representation and analysis [59]–
[62].
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Temporal Network Representations
Unlike a static network, two nodes in a temporal network that are connected at time 𝑡1maynot
be connected at a later time, 𝑡2. The connectivity dynamics of temporal networks require
conceptualizations and representations that differ from static networks. Many different
representations exist including contact sequences, graph sequences, and dynamic networks
[59].

Contact sequence, or event-based, representations of temporal networks capture the chang-
ing network structure through a time-ordered event list that includes the interacting nodes,
the time at which the interaction began, and the duration for which the interaction lasted [59],
[60]. This method is well-suited for temporal networks that change in continuous time, but
can also be applied to discrete-time networks by omitting the duration. Additionally, the
event-based representation enables clear visibility on interactions that include more than
two nodes (i.e. hypergraphs and simplicial complexes) [60]. While the simplicity of a 4-
column database may be appealing for computational purposes, this representations suffers
from potentially poor visualization ability [59].

The graph sequence, or snapshot representation captures the network evolution through a
discrete-time sequence of static networks [59], [60]. Mathematically, this is represented by

G = {𝐺 (𝑡1), 𝐺 (𝑡2), . . . , 𝐺 (𝑡𝑚𝑎𝑥)}, (2.13)

where 𝑡𝑚𝑎𝑥 is the total number of the discrete-time network snapshots, and each snapshot
𝑡𝑖 corresponds to the node set, 𝑉 , and link set, 𝐸 , as it existed at 𝑡𝑖 [60]. Equation (2.13)
is also similar to the multi-slice representation of temporal networks in the sub-field of
multilayer networks, but without interlinks between the same nodes in each slice [56].
The snapshot representation is fitting for networks with discrete-time dynamics (such as a
time-slotted wireless communication network), and benefits from the ability to apply static
network analysis methods to each individual snapshot. For instance, each graph snapshot
in Equation (2.13) could be represented by the corresponding adjacency matrix, described
in [60] as

A = {A(𝑡1),A(𝑡2), . . . ,A(𝑡𝑚𝑎𝑥)}. (2.14)

Event-based and snapshot representations of temporal networks both consider time-varying
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connectivity among a fixed number of nodes. That is, only the link set changes. Dynamic
networks, as defined by Holme in [59], consider the interplay of changes in both the link
set and node set [59]. While a subtle difference, this class of networks investigates the
co-evolution of the network structure dynamics and network function dynamics. However,
the rate of change for each set of dynamics must be considered. If the network function
changes rapidly with respect to the network structure, the investigation effectively reduces
back to an event or snapshot based representation.

Temporal Walks and Paths
Unlike connectivity between two nodes in statics networks, temporal network connectivity
also considers the causal impact of time. Consider the snapshot representation of an undi-
rected temporal network consisting of two discrete times in Figure 2.11. Over the course of
both snapshots, 𝑡1 and 𝑡2, Node 4 has a path to Node 1, but Node 1 does not have a reciprocal
path to Node 4.3 The path from Node 1 only extends to Node 3. This results from the order
in which the links between the nodes occur. This provides an intuitive sense for the concepts
of temporal walks and temporal paths.

A temporal walk from node 𝑖 to node 𝑗 is a time-ordered sequence of contacts (or events)
that allows node 𝑖 to reach node 𝑗 [60]. Similar to static network paths, a temporal path is a
temporal walk in which no node is visited more than once. Formally, in terms of a snapshot
representation, a temporal path is a sequence of 𝐿 links [𝑒1, 𝑒2, ..., 𝑒𝐿−1, 𝑒𝐿] between two
nodes 𝑖 and 𝑗 that are traversed over a sequences of snapshots that is also of length 𝐿,
[𝑡1, 𝑡2, ..., 𝑡𝐿] [60]. The existence of a temporal path implies the existence of a temporal
walk, so the remaining discussion will focus solely on temporal paths.

It is important to note that there is some disagreement in the literature about the number of
links that can be traversed in a single snapshot. The authors in [63] explicitly allow traversal
of multiple links during a single snapshot (similar to the example in Figure 2.11) by defining
the sequence of snapshot times as non-decreasing (𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡𝐿). The authors of [58]
and [64] cite [63] in the development of their definition, but tighten the constraint to an
increasing sequences of snapshots that is also of length 𝐿, 𝑡1 < 𝑡2 < ... < 𝑡𝐿 . The stipulation
that the time sequence of snapshots be increasing and equal to the number of links traversed

3This example assumes more than one link can be traversed during a single snapshot.
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Figure 2.11. Two snapshots of temporal network during which Node 4 is able
to reach Node 1, but the reverse path does not exist.

means that only one link can be traversed in each time-step, and that is the definition adopted
in this research. The reasoning for this choice and the implications for temporal component
definitions are discussed in Chapter 4.

Temporal Connectedness and Components
Nicosia et al. [58], [64] employ the concepts of temporal walks and paths to extend the
static network notions of connectedness and components to temporal networks, defining
node 𝑖 as temporally connected to a node 𝑗 if there exists a temporal path from 𝑖 to 𝑗 . Given
that temporal connectedness is not a symmetric relation (i.e., a temporal path from node 𝑖
to 𝑗 does not imply a temporal path from node 𝑗 to 𝑖), they also define strongly and weakly
connected nodes for temporal networks.

“Two nodes 𝑖 and 𝑗 of a time-varying graph are strongly connected if 𝑖 is temporally
connected to 𝑗 and also 𝑗 is temporally connected to 𝑖” [58, p. 4]. Similarly, “two nodes 𝑖
and 𝑗 of a time-varying graph are weakly connected if 𝑖 is temporally connected to 𝑗 and
also 𝑗 is temporally connected to 𝑖 in the underlying undirected time-varying graph” [58, p.
4]. These definitions are intentionally designed by Nicosia et al. so that two nodes that are
strongly or weakly connected in a temporal graph are also strongly or weakly connected
in the aggregated static graph [58], [64]. This sets up the following temporal component
definitions from [58]:

• Temporal strongly connected component (TSCC): A set of nodes of a time-varying
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graph in which each node of the set is temporally strongly connected to all other
nodes.

• Temporal weakly connected component (TWCC): A set of nodes of a time-varying
graph in which each node of the set is temporally weakly connected to all other nodes.

Finally, Nicosia et al. define the affine graph of a time-varying network as the underlying
undirected static graph (with the same nodes as the time-varying graph) associated with a
specified time interval (or observation interval) in a time-varying graph such that two nodes 𝑖
and 𝑗 are connected only if they are strongly connected in the time-varying graph [58], [64].
Said differently, the affine graph is the static projection of all temporal strongly connected
nodes pairs in a time interval.

2.3.3 Temporal Network Theory Summary
In summary, the structural connectivity of a network is a commonmeasure of functional net-
work robustness in network science. Connectivity in static networks is represented through
node adjacency and the related concepts of walks, paths, and components. These ideas are
extended in temporal network theory to account for the causal impacts of time-varying node
adjacency, and are applied to the analysis of NOMA network robustness in this research.
The following section provides an overview of prior work related to this research.

2.4 Related Work
The role of NOMA in NGMA suggests that it is important to have a clear understanding
of how overloading variability affects network robustness. As noted in Chapter 1.4, the
NOMA literature generally focuses on developing NOMA implementations that achieve
IMT-2020 performance objectives. However, several researchers have considered overload-
ing through standard physical and network layer measures of robustness while others have
approached NOMA through stochastic geometry (SG). Additionally, the connectivity of
wireless networks has been previously considered from through the lenses of static and
temporal network theory.

The following sections include expanded versions of previously published material in

B. Pimentel, A. Bordetsky, and R. Gera, “Robustness in nonorthogonal mul-
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and

tiple access 5G networks,” in Proceedings of the 55th Hawaii International 
Conference on System Sciences, 2022, pp. 7444–7453.

B. Pimentel, A. Bordetsky, R. Gera, A. Conti, and M. Z. Win, “Temporal 
connectivity as a robustness measure in NOMA wireless networks,” in IEEE 
International Conference on Communications, 2022, pp. 3911–3917. © 2022 
IEEE.

2.4.1 NOMA Robustness - Wireless Network Analysis
The link level simulation results presented by Huawei and HiSilicon at the TSG-RAN
(Working Group 1, Meeting #85) compare uplink sparse codeMA (SCMA) (a code-domain
NOMA implementation) toOFDMAby assessing the effect of variable overloading on block
error rate at multiple signal-to-noise ratios (SNRs) [66]. The measure of robustness is the
achievable decrease in SNR while maintaining a constant spectral efficiency and error rate
(i.e., achieving the same throughput for less transmit power, or in worse channel conditions).
However, due to the selected codebook structure of SCMA, the investigation is limited to a
maximum of 300% overloading and does not consider scenarios in which the ratio of NDs
to RBs exceeds the maximum overloading ratio.

In [38], Shirvanimoghaddam et al. consider the robustness of the increased connection
density enabled by NOMA. In the context of a mMTC scenario, they propose a random
access codebook-based (code-domain) uplink NOMA implementation, and define network
stability in terms of the queue size of NDs attempting to transmit in each time slot. The
network is stable if the number of NDs attempting to transmit in each time slot is less than or
equal the number attempting to transmit in the previous time slot. Based on the probability
of random codebook selection by the NDs, they develop a PMF for the overloading ratio
of each RB and then derive the maximum packet arrival rate that achieves stability; thus,
robustness is measured throughmaximum supportable packet arrival rate. Similarly, Huang,
Wang, and Zhu examine overloading stability in different downlink power-domain NOMA
scenarios where stability is defined as the power allocation among NDs that is required for
successful signal differentiation [67]. Their study investigates different cases with two NDs,
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multiple NDs, and multiple channels, but stops short of analyzing network behavior outside
of stability conditions.

This research contributes a graph theoretical model and analytical framework that measures
the effect of variable overloading on temporal connectedness between NDs.

2.4.2 NOMA Robustness - Stochastic Geometry
The robustness of wireless networks is often approached through SG analysis due to the
interference-limited nature of OMA. Stochastic geometry is a well-studied approach that
provides robustnessmetrics such as outage probability, ergodic rate, and bit error probability
through the spatial averaging of random point processes that represent the deployment of
NDs in a physical space [68]–[70]. Recent SG analysis also includes a temporal aspect
through queuing theory to consider maximum traffic density and age of information [71],
[72].

Several researchers have investigatedNOMArobustness through interference-based stochas-
tic geometry analysis that measures robustness through outage probability and ergodic
rate [36], [73]–[77]. These studies often suggest methods to minimize the outage probabil-
ity of paired NDs, thereby ensuring the requisite overloading ratio to achieve the desired
sum rate or spectral efficiency. However, the concept of overloading reduces the primacy of
interference-based analysis since NDs in NOMA networks interfere by design.

This research considers NOMA robustness from a complementary temporal random graph
theory perspective that measures robustness to variable overloading through temporal com-
ponent membership and probabilistic connectivity over time.

2.4.3 Wireless Network Robustness - Network Science
Recall from Section 2.3 that network connectivity is a common measure of robustness in
static/temporal graph-based network science analysis [55], [60]; thus, many researchers use
graph theory to investigate the probabilistic connectivity of wireless networks. Related to
this research, the authors in [78] employ random graphs to derive the probability of multihop
connectivity between NDs in ad hoc wireless sensor networks. The authors in [79] extend
the work in [78] using algebraic graph theory to characterize the quality of multihopwireless
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network connectivity. However, both works only consider static networks. In [80], Scellato
et al. consider the robustness of mobile time-varying networks by measuring the temporal
efficiency (which is a normalizedmeasure of the average shortest temporal distance between
each pair of nodes in the network) across a temporal snapshot representation of Erdös-Rényi
random graphs (Erdös-Rényi graphs are discussed further in Chapter 3). They remove nodes
from the network with a fixed probability and quantify the resulting effect on robustness
through the change in temporal efficiency.

This work explores the robustness of NOMAwireless networks measured through temporal
graph component membership and time-varying probabilistic connectivity, as a function of
NOMA overloading.
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CHAPTER 3:
System Model

This chapter presents a temporal graph model that represents the NOMA wireless network,
develops a corresponding temporal network ensemble, and discusses the relationship of the
proposed model to existing graph models.

The text includes expanded versions of previously published material in

and

B. Pimentel, A. Bordetsky, and R. Gera, “Robustness in nonorthogonal mul-
tiple access 5G networks,” in Proceedings of the 55th Hawaii International 
Conference on System Sciences, 2022, pp. 7444–7453.

B. Pimentel, A. Bordetsky, R. Gera, A. Conti, and M. Z. Win, “Temporal 
connectivity as a robustness measure in NOMA wireless networks,” in IEEE 
International Conference on Communications, 2022, pp. 3911–3917. © 2022 
IEEE.

All previously published figures from these two publications are credited with a citation in
the caption.

3.1 NOMA Graph Model
The relationship between NDs, RBs, and a single BS in a NOMA wireless network can be
represented by a graph with ND nodes, RB nodes, one BS node. The graph includes two
types of links: connectivity, and dependency. Connectivity links represent the transmission
of information signals while dependency links represent the allocation of RBs on which the
NDs are dependent for connectivity with the BS. The graph model in Figure 3.1 represents
the combination of dependency and directed connectivity relationships over a single MAC
frame in a general time division duplex (TDD) NOMA wireless network.
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A TDD scheme employs a single carrier frequency for both uplink and downlink transmis-
sions. As a result, uplink and downlink transmission subframes occur sequentially rather
than simultaneously.4 In this NOMA model, each TDD frame is composed of one uplink
subframe and one downlink subframe. Network devices transmit to the BS in the uplink
subframe, receive from the BS in the downlink subframe.

The NOMA temporal graph model in Figure 3.1 is a snapshot representation of a temporal
network where each subframe corresponds to a separate discrete-time realization of the
network. Each mixed dependency-connectivity graph realization depicts the connectivity
between the NDs and BS (represented by blue lines), and the dependence of connectivity
on the allocation of RBs to the NDs by the BS (represented by red lines). The nodes of the
graph are the same in each subframe, but the connectivity and dependency links change
as RBs are allocated to NDs by the BS. The temporal lengths of the uplink and downlink
subframes are denoted by 𝑡𝑈 and 𝑡𝐷 , respectively, and the total length of the TDD frame is
𝑡 = 𝑡𝑈 + 𝑡𝐷 .

Consistent with the TDD subframe structure, the downlink subframe graph realization only
contains directed connectivity links from the BS to the NDs, and the uplink subframe only
contains directed connectivity links from the NDs to the BS. Thus, a TDD frame of length
𝑡 is the smallest time unit in which two different NDs can be connected to each other
(unidirectionally or bidirectionally), and the values of 𝑡𝑈 , 𝑡𝐷 and 𝑡 depend on the chosen
NOMA network implementation.

3.1.1 Overloading Representation
Overloading, the critical parameter of this inquiry, is represented by the number of links
between the each RB node and the NDs. A focused view of the dependency links is provided
in Figure 3.2. The dependency link from the RBs to the BS has been removed since the
model only considers one BS, so there is no ambiguity regarding the BS from which the
RBs are allocated. The dependency subgraph in Figure 3.2 represents the overloading ratio
in the degree of each RB node, where the degree of a node, denoted deg(·), is defined as the
number of links connected to it.

4This assume that the NDs are not capable of full duplex operation (i.e. able to simultaneously transmit
and receive RF signals).
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Figure 3.1. Mixed Dependency-Connectivity NOMA graph model in which
the overloading ratio is represented by the number of links between the each
RB node and the NDs. Adapted from [17] and [65].

Note that the directed connectivity between NDs and the BS can be implied from a combi-
nation of the dependency links and the TDD subframe in which they occur. For example,
a dependency link that occurs between a RB and a ND in a downlink subframe enables a
directed connectivity link from the BS to the ND. Similarly, a dependency link that occurs
between a RB and a ND in an uplink subframe enables a directed connectivity link to the
BS from the ND. The inference of directed connectivity from the TDD frame structure
permits a simplification of the mixed dependency-connectivity graph to the dependency
subgraph, without loss of connectivity information, in each subframe. Formally, each graph
in Figure 3.2 can be specified as a bipartite graph 𝐺 (𝑈,𝑉, 𝐸) where 𝑈 is the node set of
RBs, 𝑉 is the node set of NDs, and 𝐸 is the link set representing the allocation of RBs to
NDs.
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Figure 3.2. Dependency subgraph of the mixed connectivity-dependency
NOMA graph model.

3.1.2 Model Generality
Is is important to understand that the NOMA graph model in Figure 3.1 is intended to
apply broadly across different network implementations. As noted in Section 3.1, the TDD
frame represents the smallest time unit in which two different NDs can be connected
(unidirectionally or bidirectionally) through the BS. However, the terminology may be
different depending on the wireless network standard. For example, in the context of 5GNR,
thismodel could correspond to two consecutive slotswith 15 kHz subcarrier spacing (i.e., the
subframe length and slot length are both equal to 1 ms) in which all symbols are configured
for uplink in the first slot (Slot Format 1) and downlink in the second (Slot Format 0) [12].
However, an NR frame is composed of 10 subframes, thereby allowing five opportunities for
connectivity within the length of one frame. Thus, it is imperative that the terms “frame” and
“subframe” in thismodel are interpreted as general constructs that are intended for adaptation
to the wireless network transmission structure of the specificNOMA implementation. Those
implementations could be different 5G NR subcarrier numerologies, or an entirely separate
network standard such as an IEEE 802.11 wireless local area network [81].
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The following sections refine this general model into a temporal network ensemble param-
eterized by the number of NDs, RBs, and the overloading ratio.

3.2 Temporal Network Ensemble
In this section, the NOMA network assumptions and representation are defined, and the
mathematical formalism of the temporal network ensemble is developed.

3.2.1 NOMA Network Assumptions and Representation
Consider a NOMA network composed of one BS, 𝑚 = |𝑉 | NDs, 𝑛 = |𝑈 | RBs, and an
overloading ratio 𝑧, where the parameters 𝑚, 𝑛, and 𝑧 are all positive integers specified by
the physical NOMA implementation, and | · | denotes set cardinality. Further, the number
of NDs exceeds the number of overloaded RBs available, |𝑉 | > 𝑧 |𝑈 |. Consistent with the
motivating examples of massive connectivity and federated learning over a NTN, all NDs
have a requirement to transmit in each frame, so all RBs are allocated to a subset of the
NDs in each subframe (to send and receive information). This assumption, known as the
dominant system model, is often employed in queuing theory network analysis [71], [82],
[83].

The overloading ratio is constant across all RBs and each ND is allocated a single RB. Thus,

deg(𝑢) = 𝑧, ∀𝑢 ∈ 𝑈, (3.1)

and
deg(𝑣) ∈ {0, 1}, ∀𝑣 ∈ 𝑉. (3.2)

This representation allows each ND to potentially form a link with no more than a single
RB, and models the overloading ratio uniformly in the degree of each RB node. Note that
setting the maximum degree of ND nodes equal to the value 1, abstracts the implementation
of some code-domain NOMA approaches (e.g. SCMA maps six NDs across four RBs
[47]). However, a non-uniform RB degree can be introduced to accurately characterize the
aggregate allocation of RB to NDs while still restricting the ND degree to {0, 1}. This will
become apparent in the subsequent discussion of the degree vector.

41



Degree Vector
Restricting the degree of each ND, as specified in Equation (3.2), facilitates representation
of the connectivity in each subframe graph realization by a labeled binary degree sequence,
or a degree vector d, given by

d = [deg(𝑣1), deg(𝑣2), . . . , deg(𝑣𝑚)] . (3.3)

The degree vector indicates which NDs are granted a RB allocation in each subframe (i.e,
deg(𝑣) = 1), and which are not (i.e, deg(𝑣) = 0). Note that the specific RB node with which
each ND forms a link has no bearing on the connectivity that occurs in the subframe. The
critical point is to understand which NDs are granted an allocation to any RB.

3.2.2 Network Ensemble
When paired with subframe type (uplink or downlink) to which it corresponds, the degree
vector d fully specifies the directed connectivity occurring in that subframe. Thus, the
ensemble of all possible network configurations is defined as the set of all unique degree
vectors d ∈ 𝐷 of length𝑚 where the number of NDs in each vector, 𝑣 ∈ 𝑉 , with deg(𝑣) = 1
is equal to 𝑧𝑛 ≤ 𝑚. That is,

𝑚∑︁
𝑖=1
deg(𝑣𝑖) = 𝑧𝑛 < 𝑚, ∀d ∈ 𝐷. (3.4)

The cardinality (i.e., size) of the network ensemble 𝐷 is given by the binomial coefficient
[84], [85],

|𝐷 | =
(
𝑚

𝑧𝑛

)
=

𝑚!
𝑧𝑛!(𝑚 − 𝑧𝑛)! , (3.5)

where𝑚 = |𝑉 | is the number of NDs, 𝑛 = |𝑈 | is the number of RBs, and 𝑧 is the overloading
ratio.

A subframe graph realization of the NOMA network is generated by the random selection
of a degree vector, d ∈ 𝐷, from the entire ensemble. Each degree vector is only represented
once in the ensemble, so random selection from the entire ensemble affords each vector
an equal probability of selection, which is the reciprocal of the ensemble size, |𝐷 |−1. This
network ensemble sampling process is repeated, with replacement (i.e. the same degree
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vector may be selected more than once during sampling), to generate an arbitrarily long
temporal network of 𝑇 frames, denoted G(𝑈,𝑉, 𝐸, 𝑡) for 𝑡 = 1, 2, . . . , 2𝑇 . Recall that each
frame is composed of one uplink subframe and one downlink subframe; therefore, 2𝑇
network ensemble samples are required to generate a temporal network of 𝑇 frames. The
implications for RB allocation that result from defining the temporal network ensemble
through a random graph generation process are discussed in Chapter 4.

3.2.3 Relationship to Existing Models
The NOMA temporal graph model and ensemble incorporate ideas from existing random
graph models, interdependent network theory, and temporal network models. Specifically,
the model and ensemble are a hybrid combination and adaptation of the well-known Config-
uration Model for random static networks [86], and the Activity-Driven Model for temporal
networks [87].

Interdependent Network Theory
Stemming largely from the seminal work of Buldyrev et. al. [88], interdependent network
theory studies the effects of dependency relationships on the behavior of interacting net-
works [89]–[91]. These ideas provide the basis for conceptualizing the role of RBs in
NOMA through dependency links. Interdependent networks generally represent the level
of dependence between networks through coupling. Similar to the work in [88], the NOMA
model represents the dependence of connectivity between the NDs and the BS via a one-
to-one coupling between NDs and RBs. This means that without the RB, the ND cannot
send or receive information. However, unlike many interdependent network studies, the
coupling relationship between the NDs and RBs is not bidirectional. This is because the
RBs do not represent a functional network (i.e., a network that is performing a function
such as information delivery, or electric power delivery), so they are not dependent on NDs
to perform a function. Thus, the dependence coupling is directed from the NDs to the RBs
since the allocation of RBs enables functional connectivity. This key difference contributes
to the ability to simplify the mixed dependency-connectivity network into the bipartite
representation without loss of information.

43



The Configuration Model and Related Random Bipartite Models
The Configuration Model is generative random graph model that is related to the classical
random graph models originally developed by Paul Erdös and Aldfréd Rényi. The Erdös-
Rényi Model (often referred to as a Poisson Random Graph), denoted 𝐺 (𝑛, 𝑝), specifies an
ensemble of random graphs with 𝑛 nodes and a link placed between each pair of nodes with
probability 𝑝 [92]. This model only allows control over the degree distribution (via 𝑝) of
the network rather than the exact degree composition in the network. Similarly, the random
graph model 𝐺 (𝑛, 𝑚) specifies an ensemble of graphs with 𝑛 nodes and 𝑚 links but, like
𝐺 (𝑛, 𝑝), it does not provide the ability to specify the degrees of the nodes [55]. Control over
node degree is required in the NOMA model to ensure the overloading ratio is accurately
represented.

The ConfigurationModel allows control over the network degree composition by employing
a degree sequence for graph generation. A degree sequence is a set of all node degrees in the
network. The degree sequence is instantiated in the nodes by assigning a number of “stubs”
to each labeled node that is equal to the corresponding degree from the degree sequence.
Two stubs are then chosen uniformly at random to connect and form a link. The network
ensemble is comprised of all possible “matchings" of stubs given by the degree sequence.
That is, the degree of each node (and the corresponding number of stubs) is specified
once, and the ensemble is comprised of all the different ways in which these stubs can be
connected, including parallel edges and loops that the model removes before presenting the
output graph [55], [56], [86].

The use of a degree sequence for graph generation is an important attribute that distinguishes
the Configuration Model. However, despite providing control over the node degree, the
Configuration Model does not fully meet the requirements of the NOMA temporal graph
model. Specifically, once the stubs are assigned to ND nodes and RB nodes, it is clear which
NDs will have connectivity during that subframe. The number of different ways in which
the ND stubs can be mapped to the RB stubs does not provide any additional information
about the connectivity. The NOMA model considers whether ND nodes are able to map to
any RB by defining the ensemble through all possible allocations of stubs to nodes rather
than the ways of connecting stubs that have already been allocated to nodes. Additionally,
the ConfigurationModel degree sequence is defined as a non-increasing order of the labeled
node degrees (i.e, deg(𝑣1) ≥ deg(𝑣2) ≥ . . . ≥ deg(𝑣𝑚)) [86]. For a binary degree sequence,
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this results in NDs 1 through 𝑧𝑛 always receiving RB allocations and NDs 𝑧𝑛 + 1 through
𝑚 receiving none. Thus, the NOMA temporal graph model requires a degree vector that
reflects the allocation of RBs to specific NDs, rather than a degree sequence that always
arbitrarily assigns the largest degrees to the nodes with the lowest integer labels in the
network.

Similar models of random bipartite graphs are also considered in [93] and [94]. In [93], the
authors study ensembles of directed labeled bipartite graphs, but with the stipulation that
the nodes sets are bigregular. The biregular condition requires that the degree of all nodes
in each bipartite node set be equal (but not that the degrees of both node sets are equal since
that would make a regular graph). This condition does not fit within the requirements of the
NOMAmodel since the investigation of evolving connectivity in the ND node set considers
which NDs are granted a RB allocation in each subframe and which are not. Thus, each
degree vector in the NOMA temporal graph ensemble is binary, and not regular.

The work in [94] also considers families of random bipartite graphs generated by a degree
sequence. Of those considered, the authors define a case in which an ensemble of binary
matrices (corresponding to the adjacency matrix between the two sets of the bipartite graph)
is specified by an integer list of column sums. This ensemble of adjacencymatrices is similar
to the ensemble of degree vectors in the NOMA temporal graph model, but is not quite the
same. Only specifying the column sums does not ensure that one ND does not form a link
with more than one RB, or that the overloading ratio is equal across all RBs (depending
on the organization of rows/columns in the matrix). The NOMA temporal graph model
requires specification of both row and column sums in an adjacency matrix representation
of the dependency subgraph in Figure 3.2.

The Activity-Driven Model
The activity-driven model is a random generative snapshot representation of a temporal
network that assigns an activity potential drawn from a probability distribution to each node.
The activity potential is a random variable assigned to each node that defines the probability
that each node forms 𝑚 undirected links with 𝑚 uniformly and randomly selected nodes
in the network in each snapshot [60], [87]. Nodes that are inactive in a snapshot may still
form a link with another node if they are randomly selected for link creation by an active
node. This random generative temporal network model has many similarities to the NOMA
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temporal graph model. Specifically, the probability of RB allocation to each ND (which
will be discussed further in Section 4.1) is similar to the activity potential. Additionally, like
the activity potential, the RB allocation probability is fixed for all subframe snapshots in
the NOMA temporal network. However, in contrast to the activity-driven model, the degree
vectors (once sampled) specify the connectivity that will occur in each subframe rather than
assigning a probability of connectivity to each ND. Finally, each ND node that is granted
a RB allocation can form a link with any RB node, but this is a dependency relationship,
not a connectivity relationship. All links that represent connectivity from the NDs connect
through the BS.
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CHAPTER 4:
Stochastic Temporal Component Framework

This chapter considers the NOMA temporal graph model as a random process and develops
the implications for RB allocation probability and temporal component membership.

The text includes expanded versions of previously published material in

and

B. Pimentel, A. Bordetsky, and R. Gera, “Robustness in nonorthogonal mul-
tiple access 5G networks,” in Proceedings of the 55th Hawaii International 
Conference on System Sciences, 2022, pp. 7444–7453.

B. Pimentel, A. Bordetsky, R. Gera, A. Conti, and M. Z. Win, “Temporal 
connectivity as a robustness measure in NOMA wireless networks,” in IEEE 
International Conference on Communications, 2022, pp. 3911–3917. © 2022 
IEEE.

All previously published figures from these two publications are credited with a citation in
the caption.

4.1 Network Sequence as a Bernoulli Random Process
Recall from Equations (3.2), (3.3), and (3.4) in Chapter 3 that, given a set of NOMAnetwork
parameters (𝑚, 𝑛, and 𝑧), the allocation of RBs to NDs in each subframe graph realization is
represented by a 1 × 𝑚 binary degree vector, d. Each unique degree vector d ∈ 𝐷 contains
𝑧𝑛 ones and 𝑚 − 𝑧𝑛 zeros, where ones represent the allocation of a RB to a ND; thus, the
probability of RB allocation to an individual ND in a graph realization generated from
any degree vector d ∈ 𝐷 is a Bernoulli random variable 𝑋 with probability mass function
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(PMF) given by

f𝑋 [𝑥] =


𝑝 𝑥 = 1

1 − 𝑝 𝑥 = 0

0 otherwise

, (4.1)

where
𝑝 =

𝑧𝑛

𝑚
, (4.2)

and the expectation and variance of 𝑋 areE {𝑋} = 𝑝 andV {𝑋} = 𝑝(1−𝑝), respectively [84],
[85].

As discussed in Chapter 3.2.2, theNOMA temporal graphmodel,G(𝑈,𝑉, 𝐸, 𝑡), is generated
from the random sampling of degree vectors from the network ensemble, each of which has
an equal probability of selection. Since each unique binary degree vector has 𝑧𝑛 ones and
𝑚 − 𝑧𝑛 zeros, and the selection of each degree vector is equally likely, the probability of
RB allocation to a single ND over successive subframe graph realizations are independent
and identically distributed (IID) Bernoulli trials. Thus, a sequence of 𝑁 degree vectors
randomly sampled from the network ensemble constitute a Bernoulli random process with
𝑁 realizations occurring across all NDs (i.e., all 𝑣 ∈ 𝑉) with a PMF for RB allocation in
each realization given by Equation 4.1. In matrix form, this is an 𝑁 × 𝑚 matrix, where
the rows are the randomly selected degree vectors in ascending temporal order from 𝑡1 to
𝑡𝑁 , the columns are the NDs 𝑣1 to 𝑣𝑚, and the (𝑖, 𝑗) elements are the degree of node 𝑣 𝑗 in
network realization 𝑡𝑖. Thus, each column represents the Bernoulli random process of each
ND. A visual representation is shown in Figure 4.1. The green rectangle highlights a single
network realization occurring at 𝑡𝑖, and the blue rectangle highlights a Bernoulli process of
RB allocation for a single ND, 𝑣 𝑗 .

4.1.1 Probability of Resource Block Allocation Over time
Characterizing the network sequence of each ND as a Bernoulli random process provides a
basis to consider the probability that a ND receives 𝑘 RB allocations in a temporal network
of 𝑁 realizations. The statistical independence of each RB allocation event means the joint
probability of any specific RB allocation sequence is the product all independent probabil-
ities. If the specific order of the RB allocations is not relevant, then the joint probability is
multiplied by the number of combinations that could result from a specific number of RB
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Figure 4.1. Matrix representation of 𝑁 randomly degree vectors (rows) across
𝑚 NDs (columns). Adapted from [17].

allocations and “nulls." This combined product is the well-known binomial distribution.
Thus, the probability of 𝑘 RB allocations in a temporal network of 𝑁 realizations is a
binomial random variable with probability mass function

f𝐾 [𝑘] =

(𝑁
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑁−𝑘 0 ≤ 𝑘 ≤ 𝑁

0 otherwise
, (4.3)

where 𝑝 is given by Equation 4.2 [84], [85]. This distribution can also be used to determine
the probability that the number of RB allocations falls within a range that is bounded by the
temporal network length. However, this calculation may become burdensome since it will
require the sum of the binomial random variable evaluated at many values.

Similar to an example from [84], consider the probability that one ND is granted more than
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70 RB allocations in a temporal network of 100 realizations, given by

P {𝐾 > 70} =
100∑︁
𝑘=71

(
100
𝑘

)
𝑝𝑘 (1 − 𝑝)100−𝑘 , (4.4)

where 𝐾 is the random variable representing sum of RB allocations in the temporal network
for a single ND,

𝐾 =

100∑︁
𝑖=1

𝑋𝑖, (4.5)

each 𝑋𝑖 is a Bernoulli random variable with PMF given by (4.1), and P {·} denotes proba-
bility. Notice that this is a sum of IID Bernoulli random variables and, by the Central Limit
Theorem, a sum of IID random variables converges to a Gaussian (normal) distribution with
mean 𝑛`𝐾 and variance 𝑛𝜎2𝐾 (where 𝑛 is the number of IID random variable realizations
in the sum) [84], [85]. Thus, a Gaussian random variable normalized by 𝑛`𝐾 and 𝑛𝜎2𝐾 is
given by

𝑍 =
𝐾 − 𝑛`𝑈√
𝑛𝜎𝐾

(4.6)

and, using the expectation and variance of a Bernoulli random variable defined in Sec-
tion 4.1, approximates the probability in Equation (4.4) by

P {𝐾 > 70} = P
{
𝑍 >

70 − 𝑛𝑝√︁
𝑛𝑝(1 − 𝑝)

}
, (4.7)

which is a less involved calculation that can be accomplished using a Q-function lookup
table [84], [85].

4.1.2 Resource Block Allocation Model Applicability
Most modern mobile wireless communications networks allocate RBs based on the current
channel conditions between the NDs and the BS [6], [7], [12]. For example, during a certain
time period, ND1 might have a high SNR with the BS on frequency 𝑓1, and a low SNR
with the BS on frequency 𝑓2. During the same time period, ND2 might have a high SNR
with the BS on frequency 𝑓2, and a low SNR on frequency 𝑓1. Assuming the BS has data to
transmit to both NDs, ND1will be scheduled on frequency 𝑓1, andND2will be scheduled on
frequency 𝑓2. This scheduling decision maximizes the likelihood of error free transmission
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to both NDs at the highest possible throughput (see Equation 2.1 in Chapter 2). However, if
a subset of NDs experiences poor channel conditions across large portions of the available
frequency bandwidth for an extended period of time, they may be underserved by the BS
resulting in an uneven (or unfair) allocation of RBs.

The randomRB allocationmodel resulting from the random sampling process that generates
the NOMA temporal network is a departure from channel-based dynamic scheduling. This
model assumes that the BS and NDs can achieve overloading (defined by the underlying
physical NOMA implementation) across a random subset of NDs in each subframe. Though
the random graph model was selected to facilitate tractable analysis that provides initial
insights and forms the foundation for increasingly nuanced investigations, the Bernoulli
random process also provides a maximum fairness approach to RB allocation. This is
because each ND receives a nearly equal number of RB allocations as the temporal network
length becomes large [85].

While channel-based dynamic scheduling will continue to play a prominent role in the
eMBB 5G use case, the maximum fairness RB allocation model is applicable to mMTC and
URLLC use cases such as massive connectivity and federated learning applications [31],
[42], [95]. In these cases, lower data rate requirements may be more easily met across the
available frequency spectrum (due to lower required SNR), thereby facilitating the use of a
random RB allocation model.

4.2 Temporal Component Membership
Network device membership in a temporal component can be defined in terms of con-
nectivity directly with the BS, or connectivity with the other NDs in the network through
the BS. This research focuses on the latter definition, and treats the BS as a relay rather
than a gateway, as might be the case in 5G NTNs [26], [27]. Additionally, as discussed in
Chapter 2, this research adopts the temporal path definition in which only one link can be
traversed during each snapshot of the temporal network. This definition is consistent with
the TDD MAC frame structure and centralized network topology of the NOMA system
model defined in Chapter 3. Each snapshot (i.e., graph realization) corresponds to an uplink
or downlink subframe in which each ND only has an opportunity (contingent upon RB
allocation) for directed connectivity with the BS. Thus, only one link is traversed during
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each snapshot.

The decisions to define temporal component membership based on ND-to-ND connectivity
through the BS and restrict temporal paths to single-link traversal in each snapshot render
the TWCC and TSCC indistinguishable over the course of one frame as defined in [58]
and [64]. Thus, we amend the definition of weak temporal connectedness as follows:

• Weak Temporal Connectedness: two nodes 𝑖 and 𝑗 of a time-varying graph are weakly
connected if, either 𝑖 is temporally connected to 𝑗 , or 𝑗 is temporally connected to 𝑖,
in the underlying undirected time-varying graph.

The TWCC definition remains as stated in Section 2.3.2, and the temporal components
correspond to three types of connectivity:

• TSCC: Bidirectional Connectivity
• TWCC (only): Unidirectional Connectivity
• Isolated: No Connectivity.

The following sections discuss the corresponding probabilities for each of these components.

4.3 Individual Probability of Temporal Component Mem-
bership

Defining temporal component membership based on connectivity between NDs through the
BS requires two subframes to evaluate which NDs belong to which temporal components.
Given a NOMA wireless network of 𝑚 NDs, 𝑛 RBs, and an overloading ratio 𝑧, the
probability of temporal component membership is described by the temporal component
event tree in Figure 4.2.

This event tree shows the RB allocation sample space for a single ND over two subframes,
𝑡𝑈 and 𝑡𝐷 (uplink and downlink). Resource block allocation is designated by the value
1 with probability 𝑝, and a lack of RB allocation (null) is designated by a 0 with prob-
ability 1 − 𝑝. Two subframes yield a binary sequence of length two with four possible
outcomes, {11, 10, 01, 00}. Strong temporal connectedness requires bidirectional temporal
paths between two NDs in the directed graph, which corresponds to a RB allocation in both
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Subframe 1
𝑡𝑈

Subframe 2
𝑡𝐷

Pr[00] = (1 − 𝑝)2
0

(1 − 𝑝)

Pr[01] = 𝑝(1 − 𝑝)1
𝑝

0
1 − 𝑝

Subframe 2
𝑡𝐷

Pr[10] = 𝑝(1 − 𝑝)
0

1 − 𝑝

Pr[11] = 𝑝21
𝑝

1
𝑝

Figure 4.2. Temporal component event tree illustrating the mutually exclu-
sive and exhaustive RB allocation probability space over the course of one
frame. Adapted from [17].

subframes, e.g. {11}. Weak temporal connectedness requires a unidirectional temporal path
between two NDs in the underlying undirected time-varying graph, which corresponds to
one RB allocation in either subframe, either {10} or {01}. Finally, an isolated ND cor-
responds to zero RB allocations in either subframe, {00}. These mutually exclusive and
exhaustive event probabilities are the result of an IID random process; thus, each event
probability and its complement are used to define a new Bernoulli random process that
characterizes the individual ND membership probability for the corresponding temporal
component.

Let the probability that any ND, 𝑣 ∈ 𝑉 , is a member of the TSCC, TWCC (only5), or isolated
during any frame in a network sequence be denoted by 𝑝𝑠, 𝑝𝑤, and 𝑝𝑖, respectively, where

𝑝𝑠 = 𝑝
2, 𝑝𝑤 = 2𝑝(1 − 𝑝), 𝑝𝑖 = (1 − 𝑝)2, and

𝑝𝑠 + 𝑝𝑤 + 𝑝𝑖 = 1.

The probability that a ND is a member of the TSCC in any arbitrary frame is given by
substituting 𝑝𝑠 for 𝑝 in Equation 4.1. Similarly, the probability that a ND is a member of

5All NDs in the TSCC are also part of the TWCC, but this characterization considers the NDs that are
only part of the TWCC.
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the TSCC for 𝑘 frames in a network sequence of 𝑁 frames is given by substituting 𝑝𝑠 for 𝑝
in Equation 4.3. This same approach also applies to the event probabilities for the TWCC
and isolated events.

4.4 Joint Probability of Temporal Component Member-
ship

The analysis of joint ND temporal component membership is different than for an individual
ND, and can be characterized by the joint probability mass function defined in [84] as

f𝐾1,𝐾2 [𝑘1, 𝑘2]
def
= P {𝐾1 = 𝑘1, 𝐾2 = 𝑘2} . (4.8)

Recall from Section 4.1 that the probability of RB allocation for one ND can be analyzed
over an arbitrary number of network realizations from (1, ..., 𝑁), where each realization
is an IID Bernoulli random variable, and the joint probability of any specific sequence of
events is the product of the individual event probabilities. However, each network realization
is the result of a randomly selected degree vector with fixed values that are dependent on
the network parameters, so the probability of RB allocation for two or more NDs are not
independent within a single network realization. Thus, the joint probabilities cannot be
found by the product of the marginal probabilities. Rather, the joint PMFmust be calculated
from the product of the conditional and marginal PMFs

f𝐾1,𝐾2 [𝑘1, 𝑘2] = f𝐾1 | 𝐾2 [𝑘1 | 𝑘2] f𝐾2 [𝑘2], (4.9)

where the conditional PMF is defined as

f𝐾1 | 𝐾2 [𝑘1 | 𝑘2]
def
= P {𝐾1 = 𝑘1 | 𝐾2 = 𝑘2} , (4.10)

and [𝑘𝑖 | 𝑘 𝑗 ] denotes that event 𝑘𝑖 is conditioned on the occurrence of event 𝑘 𝑗 [84].
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4.4.1 Example Joint Probability Calculation
For example, consider the joint probability that two NDs, 𝑢𝑖 and 𝑢 𝑗 (for 𝑖 ≠ 𝑗), receive
exactly one RB allocation between them in a NOMA wireless network with two RBs, six
NDs, and an overloading ratio 𝑧 = 2. The allocation of one RB can occur as deg 𝑢𝑖 → 1
and deg 𝑢 𝑗 → 0 or deg 𝑢𝑖 → 0 and deg 𝑢 𝑗 → 1, so the joint probability of receiving one
RB allocation between them is

P
{
deg 𝑢𝑖 + deg 𝑢 𝑗 = 1 | 𝑖 ≠ 𝑗

}
= f𝑈𝑖 ,𝑈 𝑗

[1, 0] + f𝑈𝑖 ,𝑈 𝑗
[0, 1] . (4.11)

Substituting the two terms on the right side of Equation (4.11) into Equation (4.9) and using
the NOMA network parameters to determine the conditional and marginal probabilities
gives

f𝑈1,𝑈2 [1, 0] = f𝑈1 | 𝑈2 [1 | 0] f𝑈2 [0] =
(
4
5

) (
1
3

)
=
4
15
, (4.12)

and
f𝑈1,𝑈2 [0, 1] = f𝑈1 | 𝑈2 [0 | 1] f𝑈2 [1] =

(
2
5

) (
2
3

)
=
4
15
. (4.13)

Substituting the results of Equations (4.12) and (4.13) back into Equation (4.11) gives the
total probability of any two randomly selected NDs receiving a single RB in one network
realization,

P
{
deg 𝑢𝑖 + deg 𝑢 𝑗 = 1 | 𝑖 ≠ 𝑗

}
=
4
15

+ 4
15

=
8
15
. (4.14)

Notice the two joint probabilities f𝑈1,𝑈2 [1, 0] and f𝑈1,𝑈2 [0, 1] are not equal to the product
of the marginal probabilities where

f𝑈𝑖
[1] = 2

3
and f𝑈𝑖

[0] = 1
3
,

which confirms they are not independent.

The joint probability of a single RB allocation among two randomly selected NDs can also
be calculated from a combinatorial perspective by selecting

(4
1
)
RB allocations, and

(2
1
)

nulls, from a total of
(6
2
)
NDs. Employing the product rule to determine the total number

ways to select one RB allocation and one null, and dividing by the total number of ways to
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select two NDs gives (4
1
) (2
1
)(6

2
) =

8
15
. (4.15)

4.4.2 Hypergeometric PMF
Notice that the combinatorial method of calculating the joint probability in Equation (4.15)
is the same method used to determine the probability of drawing a sample of 𝑛 items
containing 𝑘 successes, without replacement, from a population 𝑁 with a known number
of successes 𝑀 [85]. This is the well-known hypergeometric distribution with PMF given
in [85] by

f𝐾 [𝑘] =
(𝑀
𝑘

) (𝑁−𝑀
𝑛−𝑘

)(𝑁
𝑛

) . (4.16)

In the NOMA temporal network model, the successes are those NDs in the sample that
receive a RB allocation. Substituting the NOMA parameters into Equation 4.16 gives

f𝐾 [𝑘] =
(𝑛𝑧
𝑘

) (𝑚−𝑛𝑧
𝑚𝑠−𝑘

)( 𝑚
𝑚𝑠

) , (4.17)

where 𝑚𝑠 is the number of NDs sampled, 𝑚 is the total number of NDs in the network, the
quantity of known successes is the number of RBs multiplied by the overloading ratio, 𝑛𝑧,
and 𝑘 is the number of RBs allocated to the unlabeled NDs in the sample.

Unlabeled NDs
The hypergeometric distribution provides the joint probability of any RB allocation among
randomly selected unlabeled distinct NDs from a single network realization. Continuing
with the example NOMA network paramaterized by two RBs, six NDs, and an overloading
ratio 𝑧 = 2, the joint probability of RB allocation among two NDs is

f𝐾 [𝑘] =
(4
𝑘

) ( 2
2−𝑘

)(6
2
) , (4.18)

which results in probabilities of { 115 ,
8
15 ,

6
15 } for 𝑘 ∈ {0, 1, 2}, respectively. These values

correspond to the probability that any two randomly selected unlabeled distinct NDs have
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0, 1, or 2 RBs allocated to them in a single network realization (i.e. subframe).

Labeled NDs
Determining the joint probability of RB allocation among any labeled combination of NDs
requires equally distributing the unlabeled joint probability over the number of possible
unique RB allocations to the labeled NDs, where the number of possible RB combinations
is given by the binomial coefficient

(𝑚𝑠

𝑘

)
. Thus, the labeled probabilities are given by

f𝐾 [𝑘]labeled =
f𝐾 [𝑘](𝑚𝑠

𝑘

) . (4.19)

Temporal Component Membership
Given the relationship between RB allocation and temporal component membership, the
hypergeometric distribution can be used to stochastically characterize the temporal compo-
nent membership of specific or randomly selected groups of NDs (i.e., labeled or unlabeled)
ranging in size from two to the total number of NDs in the network (however, as the number
of NDs becomes large, this may converge to the binomial distribution if 𝑛𝑧 does not increase
proportionally [96]).

Once the joint probability has been determined, it is fixed over all frames in the network
sequence and each frame is an IID realization. Thus, after defining an exhaustive and
mutually exclusive joint probability space (parameterized by the number of NDs, RBs, and
overloading ratio), the joint temporal component membership probability can be determined
over an arbitrary number of frames using the same approach discussed in Section 4.3.

4.5 Summary
In this chapter, the conceptualization of the NOMA temporal graph model as a Bernoulli
random process was introduced. The implications of this idea were extended to the prob-
ability of RB allocation to NDs in each subframe, and formed the basis of the stochastic
temporal component framework. This framework provides probabilistic tools to understand
temporal component membership in terms of NOMA network parameters for individual
NDs and groups of NDs. Thus, for a constant number of NDs and RBs, the probabilities
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of membership in the TSCC and TWCC are measures of NOMA network robustness as a
function of overloading. However, the framework does not consider the impact of messages
that are sent in one frame, but not received until a later frame. The impact of “queued”
messages on NOMA network robustness is considered through temporal connectivity in
Chapter 5.
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CHAPTER 5:
Temporal Connectivity

This chapter introduces themathematicalmodel of temporal connectivity that corresponds to
the NOMA temporal graph ensemble, and develops expressions for the following measures
of NOMA robustness:

• Probability of Temporal Connectivity in Each Frame
• Probability of Time to Initial Unidirectional Connectivity
• Probability of Time Window Between Unidirectional Connectivity
• Probability of Time to Initial Bidirectional Connectivity
• Probability of Minimum Time to Complete Bidirectional Connectivity.

The text includes expanded versions of previously published material in

and

B. Pimentel, A. Bordetsky, and R. Gera, “Robustness in nonorthogonal mul-
tiple access 5G networks,” in Proceedings of the 55th Hawaii International 
Conference on System Sciences, 2022, pp. 7444–7453.

B. Pimentel, A. Bordetsky, R. Gera, A. Conti, and M. Z. Win, “Temporal 
connectivity as a robustness measure in NOMA wireless networks,” in IEEE 
International Conference on Communications, 2022, pp. 3911–3917. © 2022 
IEEE.

All previously published figures from these two publications are credited with a citation in
the caption.

5.1 Mathematical Model of Connectivity
The mathematical model of connectivity considers temporal connectivity between NDs
through potential connectivity matrices, a frame connectivity matrix, and a queue matrix.
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Potential Connectivity Matrices
Potential connectivity matrices are directed adjacency matrices that represent the possi-
ble connections between NDs enabled by the allocation of RBs in the uplink or downlink
subframes. Each potential connectivity matrix is a function of RB allocation to the NDs
resulting from the random sampling of degree vectors from the network ensemble. Specifi-
cally, given a binary 1 ×𝑚 degree vector d, the 𝑚 ×𝑚 uplink potential connectivity matrix
U is given by

U = diag(d) (1 − I), (5.1)

where 1 is 𝑚 × 𝑚 uniform matrix, I is 𝑚 × 𝑚 identity matrix, and diag(·) is the diagonal
operator.6 Since U is a directed adjacency matrix, the binary values of the (𝑖, 𝑗) elements
represent whether ND 𝑖 has the potential to send a message to ND 𝑗 . For example, the
degree vector d = [0 0 1 1] has an uplink potential connectivity matrix,

U =


0 0 0 0
0 0 0 0
1 1 0 1
1 1 1 0


. (5.2)

The matrix in Equation (5.2) shows that, in a network of four NDs, the third and fourth
NDs have the potential to send a message to all other NDs in the network during that frame
(depending on which NDs are granted a RB allocation in the downlink subframe). Note that
this representation excludes potential connectivity from a ND to itself (i.e., no self-links)
because a ND does not send information to itself via the BS.

Similarly, D is the 𝑚 × 𝑚 downlink potential connectivity matrix given by

D = (1 − I)diag(d). (5.3)

Like U, the binary values of the (𝑖, 𝑗) elements of D represent whether ND 𝑗 has the
potential to receive a message from ND 𝑖. Extending the same example, the degree vector

6The diagonal operator places a 1 × 𝑚 vector along the main diagonal of an 𝑚 × 𝑚 matrix.
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d = [0 0 1 1] has a downlink potential connectivity matrix,

D =


0 0 1 1
0 0 1 1
0 0 0 1
0 0 1 0


. (5.4)

The matrix in Equation (5.4) shows that, in a network of four NDs, the third and fourth NDs
have the potential to receive a message from all other NDs in the network during that frame
(depending on which NDs are granted a RB allocation in the uplink subframe).

Frame Connectivity and Queue Matrices
The frame connectivity matrix F𝑡 is a directed adjacency matrix that shows the directed
connectivity achieved betweenNDs during frame 𝑡. TwoNDs, 𝑖 and 𝑗 , may establish directed
connectivity in an arbitrary frame, 𝑡, in two ways. First, ND 𝑖 may be granted an uplink RB
allocation and ND 𝑗 may be granted a downlink RB allocation, both in frame 𝑡. Second,
ND 𝑖 may be granted an uplink RB allocation in frame 𝜏 < 𝑡, and ND 𝑗 is not granted
a downlink RB allocation until frame 𝑡. In this case, the message from ND 𝑖 is queued at
the BS until ND 𝑗 is granted a downlink RB allocation in frame 𝑡. The frame connectivity
matrix, F𝑡 , is an 𝑚 × 𝑚 directed adjacency matrix that describes the connectivity in frame
𝑡 resulting from either of these possibilities. The (𝑖, 𝑗) element of F𝑡 , denoted 𝐹 𝑡

𝑖 𝑗
, is equal

to one if ND 𝑖 is connected to ND 𝑗 in frame 𝑡, and zero otherwise.

The queue matrix, Q𝑡 , is an 𝑚 × 𝑚 matrix that accounts for “undelivered" messages. The
(𝑖, 𝑗) element of Q𝑡 , denoted 𝑄𝑡

𝑖 𝑗
, represents the number of uplink transmissions from ND

𝑖 that have not been received via downlink receptions at ND 𝑗 . Thus, for 𝑡 ≥ 1, F𝑡 and Q𝑡

are defined recursively as
F𝑡 = 1Z+

(
U + Q𝑡−1

)
⊙ D (5.5)

and
Q𝑡 = U + Q𝑡−1 − F𝑡 (5.6)

where ⊙ denotes the Hadamard (element-wise) product defined in [97], Q0 is an 𝑚 × 𝑚
null (or zero) matrix 0 from [98] (representing empty queues when the network sequence
begins), and 1Z+ (·) is the indicator function (or characteristic function on a set) from [99]
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for the set of positive integers, defined as

1Z+ (X) def=

1 if 𝑥𝑖 𝑗 ∈ Z+

0 otherwise
. (5.7)

This mathematical conceptualization captures the directed connectivity between NDs that
results from RB allocation in that frame as well as queued messages from previous frames.
The representation also makes the physical assumptions that the message length, transmis-
sion rate, and transmission time support the transmission/reception of up to 𝑚−1messages
in the uplink and downlink subframes.

Example
Consider an example frame 𝑡 = 1 in a network with four NDs. Let the degree vectors
d𝑈𝐿 = [0 0 1 1] and d𝐷𝐿 = [1 0 1 0] represent the uplink and downlink RB allocations
in frame 𝑡 = 1, respectively. Employing Equations (5.1), (5.3), and (5.5) together with the
definition that Q0 = 0 gives

F1 = 1Z+

©«

0 0 0 0
0 0 0 0
1 1 0 1
1 1 1 0


+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


ª®®®®®¬
⊙


0 0 1 0
1 0 1 0
1 0 0 0
1 0 1 0


=


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0


. (5.8)

In this frame, NDs three and four were able to send a message in the uplink, and NDs one
and three were able to receive a message in the downlink. The resulting frame connectivity
matrix in Equation (5.8) reflects the unidirectional connectivity from NDs three and four
to ND one, and from ND four to ND three. Notice that there is an odd number of non-zero
elements in F1 because ND three received both an uplink and downlink allocation, but
self-links are not permitted because the ND does not send a message to itself. Extending
this example to the queue matrix defined in Equation (5.6) gives

Q1 =


0 0 0 0
0 0 0 0
1 1 0 1
1 1 1 0


+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


−


0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0


=


0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 0


. (5.9)
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The resulting matrix in Equation (5.9) shows the queued messages from ND three to NDs
two and four, and from ND four to ND two. This matrix will be included in the connectivity
for frame 𝑡 = 2 through addition with the uplink potential connectivity matrix that results
from the uplink RB allocation in frame 𝑡 = 2.

5.2 Probability of Temporal Connectivity in Each Frame
The frame connectivity matrix defined in Equation (5.5) describes connectivity between ND
𝑖 and ND 𝑗 in frame 𝑡 through a logical OR operation followed by a logical AND operation.
In this section, these logical operations are represented stochastically by considering the
probability of temporal connectivity from ND 𝑖 to ND 𝑗 in frame 𝑡 as a function of the
random processes that underlie each realization of U, D, and Q𝑡−1.

5.2.1 Potential Connectivity Matrices as Bernoulli Trials
The randomallocation ofRBs in the uplink and downlink subframes described inChapter 4.1
characterizes the (𝑖, 𝑗) elements of U and D, denoted 𝑈𝑖 𝑗 and 𝐷𝑖 𝑗 , as Bernoulli random
variables with 𝑝 defined in Equation (4.2), for 𝑖 ≠ 𝑗 . Thus,

P
{
𝑈𝑖 𝑗 = 1

}
= P

{
𝐷𝑖 𝑗 = 1

}
= 𝑝 (5.10)

and
P

{
𝑈𝑖 𝑗 = 0

}
= P

{
𝐷𝑖 𝑗 = 0

}
= 𝑞 (5.11)

where 𝑞 = 1 − 𝑝. Note that U and D have no reference to the frame in which they occur.
Each realization of both matrices is statistically independent due to their construction from
the random selection of degree vectors from the network ensemble.

5.2.2 Queue Dynamics as a Markov Process
As briefly discussed in Section 5.1, the value of𝑄𝑡

𝑖 𝑗
represents the number of transmissions

from ND 𝑖 that have not yet been received by ND 𝑗 . The network sequence begins with
empty queues between all NDs, so the value for each queue must be a non-negative integer,
𝑄𝑡
𝑖 𝑗

≥ 0, for each frame 𝑡 ≥ 0. As the network sequence progresses through time, 𝑄𝑡
𝑖 𝑗

changes based on the uplink RB allocations to ND 𝑖, and the downlink RB allocations to
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ND 𝑗 . For example, if ND 𝑖 is granted an uplink RB allocation in frame 𝑡, and ND 𝑗 is not
granted a downlink RB allocation in frame 𝑡, then 𝑄𝑡

𝑖 𝑗
= 𝑄𝑡−1

𝑖 𝑗
+ 1. Similarly, if ND 𝑖 is not

granted an uplink RB allocation in frame 𝑡, and ND 𝑗 is granted a downlink RB allocation
in frame 𝑡, then 𝑄𝑡

𝑖 𝑗
= 𝑄𝑡−1

𝑖 𝑗
− 1 for 𝑄𝑡−1

𝑖 𝑗
> 0. If 𝑄𝑡−1

𝑖 𝑗
= 0, then 𝑄𝑡

𝑖 𝑗
remains zero. Thus,

𝑄𝑡
𝑖 𝑗
(for 𝑖 ≠ 𝑗) evolves as a discrete Markov process. Specifically, the queue dynamics can

be modeled as a one-dimensional random walk with one reflecting barrier [85]. A random
walk of this type is depicted in Figure 5.1.

The states of the walk, (𝑒0, 𝑒1, . . . , 𝑒𝑙 , . . .), are the values of 𝑄𝑡𝑖 𝑗 . State 𝑒0 is the state in
which 𝑄𝑡

𝑖 𝑗
= 0, and the queue from ND 𝑖 to ND 𝑗 is empty. Similarly, state 𝑒𝑙 is the state in

which 𝑄𝑡
𝑖 𝑗
= 𝑙, and the queue from ND 𝑖 to ND 𝑗 contains 𝑙 messages.

Figure 5.1. One-dimensional random walk with one reflecting barrier.
Adapted from [85].

The walk dynamics are governed by state transition probabilities. These probabilities de-
scribe the likelihood that the “walker" (i.e., the queue) will transition from the current
state to a different state, or remain in the same state during a transition opportunity. The
probabilities are represented in a state transition matrix P, defined in [84] as

P =



𝑃00 𝑃01 𝑃02 𝑃03 . . .

𝑃10 𝑃11 𝑃12 𝑃13 . . .

𝑃20 𝑃21 𝑃22 𝑃23 . . .

𝑃30 𝑃31 𝑃32 𝑃33 . . .
...

...
...

...
...


.
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Each (𝑖, 𝑗) element, denoted 𝑃𝑖 𝑗 , is the probability of transition from state 𝑖 to state 𝑗 [84].
Notice that all states have three state transition probabilities except for state 𝑒0. The message
queue cannot be negative, so there are only two state transition probabilities if the current
state is an empty queue. This is the “reflecting barrier” of the one-dimensional random
walk [85]. Additionally, the sum of the state transition probabilities from each state are
always equal to 1 (i.e., each row in P sums to 1).

In the temporal NOMA network model, state transitions occur in each frame. The next
section discusses the transition probabilities.

State Transition Probabilities
The randomwalk is governed by state transition probabilities that are defined in terms of the
RB allocation probability from Equation (4.2). When 𝑄𝑡−1

𝑖 𝑗
= 0 and the queue is in state 𝑒0,

the queue will only increase by one message if ND 𝑖 is granted an uplink RB allocation with
probability 𝑝, and RB 𝑗 is not granted a downlink RB allocation with probability 𝑞 = 1− 𝑝.
All other possibilities return the empty queue to the same state, giving

𝑝0 = 𝑝𝑞 (5.12)

and
𝑟0 = 1 − 𝑝0, (5.13)

where, from [85], 𝑝0 is the transition probability to state 𝑒1, 𝑟0 is the transition probability
to state 𝑒0, and

𝑝0 + 𝑟0 = 1. (5.14)

When 𝑄𝑡−1
𝑖 𝑗

> 0 and the queue is in state 𝑒𝑙 (for 𝑙 > 0), 𝑄𝑡𝑖 𝑗 can transition to state
𝑒𝑙−1, 𝑒𝑙 , or , 𝑒𝑙+1. In this case, the queue is not empty, so it can increase by one message
with probability 𝑝𝑙 , remain the same with probability 𝑟𝑙 , or decrease by one message with
probability 𝑞𝑙 , where, from [85]

𝑝𝑙 + 𝑟𝑙 + 𝑞𝑙 = 1. (5.15)

An increase in the queue occurs when ND 𝑖 is granted an uplink RB allocation and ND 𝑗 is
not granted a downlink RB allocation. The queue remains the same when ND 𝑖 and ND 𝑗

are both granted uplink and downlink RB allocations, respectively, or when neither do. The
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queue decreases when ND 𝑖 is not granted an uplink RB allocation and RB 𝑗 is granted a
downlink RB allocation. The probabilities for these events are given by

𝑝𝑙 = 𝑝𝑞, (5.16)

𝑟𝑙 = 𝑝
2 + 𝑞2, (5.17)

and
𝑞𝑙 = 𝑞𝑝, (5.18)

respectively. Thus, the state transition matrix, S, is defined as

S =



𝑟0 𝑝0 0 0 0 . . .

𝑞1 𝑟1 𝑝1 0 0 . . .

0 𝑞2 𝑟2 𝑝2 0 . . .

0 0 𝑞3 𝑟3 𝑝3 . . .
...

...
...

...
...

...


(5.19)

where the (𝑖, 𝑗) elements of S, denoted 𝑆𝑖 𝑗 , are the transition probabilities from state 𝑖 to
state 𝑗 [85].

Higher Order Transition Probabilities
The state transitionmatrix in Equation (5.19) only provides the queue transition probabilities
for one frame. However, the Chapman-Kolmogorov equation states that the probability of
transitioning from state 𝑖 to state 𝑗 in ℓ transitions is found by raising the state transition
matrix to the ℓ𝑡ℎ power [84], [85]. This result is applied by raising S to the ℓ𝑡ℎ power, denoted
S(ℓ) , to determine the transition probabilities from state 𝑖 to state 𝑗 in ℓ frames. Thus, given
a vector of queue state probabilities in frame 𝑡, denoted s𝑡 = [𝑠𝑡0, 𝑠

𝑡
1, 𝑠

𝑡
2, . . . , 𝑠

𝑡
𝑙
, . . .], the

probability that 𝑄𝑡
𝑖 𝑗
transitions to state 𝑒𝑙 in frame 𝑡 + ℓ is given by

s𝑡+ℓ = s𝑡S(ℓ) (5.20)

where
𝑠𝑡+ℓ𝑙 = P

{
𝑄𝑡+ℓ𝑖 𝑗 = 𝑒𝑙

}
. (5.21)
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Stochastic Queue State
The critical contribution of the queue to the probability of connectivity in frame 𝑡 is
whether or not there is a message in the queue at the conclusion of the previous frame,
namely P

{
𝑄𝑡−1
𝑖 𝑗

> 0
}
. The network sequence begins at 𝑡 = 0 with empty queues; therefore,

the vector of queue state probabilities is given by s0 = [1, 0, 0, . . .] since the probability of
an empty queue is certain. Substituting these queue state probabilities into Equation (5.20)
gives

sℓ = s0S(ℓ) , (5.22)

and the queue state transition probabilities in frame ℓ = 𝑡 − 1 are given by

s𝑡−1 = s0S(𝑡−1) , (5.23)

for 𝑡 ≥ 2. The probability that an individual queue is empty at the conclusion of frame 𝑡 − 1
is equal to the first element of the queue state probability vector at frame 𝑡 −1, denoted 𝑠𝑡−10 .
Thus, the probability of at least one queued message from ND 𝑖 to ND 𝑗 in frame 𝑡 − 1 is
given by

P
{
𝑄𝑡−1𝑖 𝑗 > 0

}
= 1 − 𝑠𝑡−10 . (5.24)

Equation (5.24) provides the stochastic queue state in frame 𝑡−1 required to define stochastic
frame connectivity in frame 𝑡.

5.2.3 Stochastic Frame Connectivity
Recall that each element of F𝑡 in Equation (5.5) is the result of a logical OR operation
followed by a logical AND operation. The OR operation corresponds to a transmission
from ND 𝑖 in some frame 1 ≤ 𝜏 ≤ 𝑡, and is represented by the sum ofU andQ𝑡−1. The AND
operation corresponds to reception by ND 𝑗 in frame 𝑡, and is represented by the Hadamard
product of D with the result of the OR operation. These logical operations are considered
stochastically through the probability of events.
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Probability of Events
The following brief review of the probability of events is from [84] and [85]. The probability
of event 𝐴1 and 𝐴2 occurring is their intersection, or joint probability, denoted

P {𝐴1 ∩ 𝐴2} = P {𝐴1, 𝐴2} .

When 𝐴1 and 𝐴2 are statistically independent, their joint probability is the product of the
individual probabilities, denoted

P {𝐴1, 𝐴2} = P {𝐴1} P {𝐴2} .

The probability of event 𝐴1 or 𝐴2 occurring is their union minus their intersection,

P {𝐴1 ∪ 𝐴2} = P {𝐴1} + P {𝐴2} − P {𝐴1, 𝐴2} .

Stochastic Representation of Frame Connectivity
Characterizing frame connectivity through the probability of events stochastically recasts
Equation (5.5) as

P
{
𝐹 𝑡𝑖 𝑗 = 1

}
= P

{
(𝑈𝑖 𝑗 = 1 ∪ 𝑄𝑡−1𝑖 𝑗 > 0), (𝐷𝑖 𝑗 = 1)

}
. (5.25)

Consider the first frame of a network sequence, 𝑡 = 1, as an example. The lack of queued
messages at the beginning of the network sequence (since Q0 = 0) means that a link from
ND 𝑖 to ND 𝑗 requires an uplink RB allocation to ND 𝑖 and a downlink RB allocation to
ND 𝑗 , with probabilities given in equation (5.10). Given the independence of RB allocation
events, the probability of a link from ND 𝑖 to ND 𝑗 in frame 𝑡 = 1 is

P
{
𝐹1𝑖 𝑗 = 1

}
= P

{
𝑈𝑖 𝑗 = 1

}
P

{
𝐷𝑖 𝑗 = 1

}
= 𝑝2. (5.26)

However, the impact of queued messages must be considered in all subsequent frames,
𝑡 > 1.

The probability that, for 𝑡 > 1, ND 𝑖 is either granted an uplink RB allocation to transmit to
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ND 𝑗 , or has a previously queued message for ND 𝑗 is given by

P
{
𝑈𝑖 𝑗 = 1 ∪𝑄𝑡−1𝑖 𝑗 > 0

}
=

P
{
𝑈𝑖 𝑗 = 1

}
+ P

{
𝑄𝑡−1𝑖 𝑗 > 0

}
− P

{
𝑈𝑖 𝑗 = 1

}
P

{
𝑄𝑡−1𝑖 𝑗 > 0

}
. (5.27)

Substituting the probabilities from Equations (5.10) and (5.24) into Equation (5.27), after
simplification, gives

P
{
𝑈𝑖 𝑗 = 1 ∪𝑄𝑡−1𝑖 𝑗 > 0

}
= 1 − 𝑠𝑡−10 + 𝑝(𝑠𝑡−10 ). (5.28)

Finally, substituting Equation (5.10) and the result of Equation (5.28) into Equation (5.25)
gives

P
{
𝐹 𝑡𝑖 𝑗 = 1

}
= 𝑝(1 − 𝑠𝑡−10 + 𝑝𝑠𝑡−10 ). (5.29)

5.2.4 Discussion
Equation (5.29) describes the probability of directed connectivity from ND 𝑖 to ND 𝑗 in any
frame 𝑡 > 0 based on the underlying random processes of U, D, and Q𝑡−1. The Bernoulli
process that characterizes RB allocation and the Markov process that describes the queue
dynamics are both parameterized in terms of 𝑝 fromEquation (4.2). Thus, for a fixed number
of NDs and RBs, this result expresses the probability of temporal network connectivity, or
network robustness, in frame 𝑡 as a function of the overloading ratio, 𝑧. A comparison of the
probabilities of directed connectivity from ND 𝑖 to ND for frames 1 ≤ 𝑘 ≤ 30 in a network
with 1,000 NDs, 100 RBs, and overloading ratios 𝑧 ∈ {2, 3, 4} is depicted in Figure 5.2.
As one might expect, the probability of directed connectivity increases with 𝑧 (i.e., RBs are
more available). This provides a means to measure the robustness of NOMA networks to
variable overloading by the effect on probabilistic connectivity.

Employing probabilistic temporal connectivity as a robustness measure is particularly bene-
ficial for designing NOMAnetworks that support massive connectivity or federated learning
applications, whose performance depends on the ability to provide timely updates [16], [31].
The next section explored the probability of initial connectivity between ND 𝑖 and ND 𝑗 in
frame 𝑡.
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Figure 5.2. Probability of directed connectivity from ND 𝑖 to ND 𝑗 for frame
1 ≤ 𝑘 ≤ 30 in a network with 1,000 NDs, 100 RBs, and overloading ratios
𝑧 ∈ {2, 3, 4}.

5.3 Probability of Time to Initial Unidirectional Connec-
tivity

In addition to the probability of directed connectivity in frame 𝑡, NOMA network designers
may need to consider the time required for ND 𝑖 and ND 𝑗 to first connect. Mathematically,
the probability that the first directed link from ND 𝑖 to ND 𝑗 occurs in frame 𝑇 is the joint
probability that 𝐹𝑇

𝑖 𝑗
is equal to one, and equal to zero in all previous frames, expressed as

P{𝐹𝑇
𝑖 𝑗
= 1,

∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0}.

In each frame 𝑡, a directed link from ND 𝑖 to ND 𝑗 either occurs, or does not. Thus, the
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temporal evolution of 𝐹 𝑡
𝑖 𝑗
can be conceptualized as a decision tree rooted at frame 𝑡 = 0

when the network sequence begins. The tree bifurcates into two branches at frame 𝑡 = 1,
where 𝐹1

𝑖 𝑗
∈ {0, 1} represents a link (value of 1) or no link (value of 0), and the probability

that 𝐹1
𝑖 𝑗
= 1 is given by Equation (5.26). However, for all subsequent frames 𝑡 > 1, the set of

directed 𝑖- 𝑗 links that have not previously been established is limited to only those for which
𝐹1
𝑖 𝑗
= 0. Thus, by following the decision tree down the branch where

∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0 in each

frame, the complement of the probability of the zero branch in frame 𝑇 is the probability
that the first directed link from ND 𝑖 to ND 𝑗 occurs in frame 𝑇 . An example decision tree
for the first two frames of a network sequence is shown in Figure 5.3. The following sections
formally develop this idea through the use of conditional probabilities.

Frame 1 𝐹1
𝑖 𝑗

P
{
𝐹1
𝑖 𝑗
= 1

}
= 𝑝2

1

Frame 2 𝐹2
𝑖 𝑗

P
{
𝐹2
𝑖 𝑗
= 1, 𝐹1

𝑖 𝑗
= 0

}1

P
{∑2

𝑡=1 𝐹
𝑡
𝑖 𝑗
= 0

}
0

0

Figure 5.3. Decision tree depicting the branch of no directed connectivity
from ND 𝑖 to ND 𝑗 in frame 𝑡. The complement of this branch in each frame
is the probability of initial directed connectivity from ND 𝑖 to ND 𝑗 in frame
𝑡.

5.3.1 Joint Probability of Initial Connectivity
The joint probability of event 𝐴1 and 𝐴2 is the product of the probability of event 𝐴1
conditioned on the occurrence of event 𝐴2 and the individual probability of 𝐴2 [84],

P {𝐴1, 𝐴2} = P {𝐴1 |𝐴2} P {𝐴2} . (5.30)
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Thus, the joint probability that the first directed link from ND 𝑖 to ND 𝑗 occurs in frame 𝑇
can be expressed as the conditional probability

P

{
𝐹𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
= P

{
𝐹𝑇𝑖 𝑗 = 1

����� 𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
P

{
𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
. (5.31)

Notice that the first term on the right side of Equation (5.31), P
{
𝐹𝑇
𝑖 𝑗
= 1

��� ∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

}
,

is similar to the term on the left side of Equation (5.29). Both equations consider the
probability of directed connectivity from ND 𝑖 to ND 𝑗 in frame 𝑇 , but Equation (5.31)
conditions that probability on the event that no directed connectivity from ND 𝑖 to ND 𝑗

has occurred up to frame 𝑇 − 1. This has no effect on the 𝑝 terms in Equation (5.29), since
those terms result from IID realizations of the subframe sampling process. However, the
𝑠𝑡−10 term (which is the probability that the queue is empty in frame 𝑡 − 1) is dependent on
previous queue states and must be modified to express the probability that queue is empty
in frame 𝑇 − 1, conditioned on ∑𝑇−1

𝑡=0 𝐹
𝑡
𝑖 𝑗
= 0, given by

P

{
𝐹𝑇𝑖 𝑗 = 1

����� 𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
=

𝑝

(
1 − P

{
𝑄𝑇−1𝑖 𝑗 = 0

����� 𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
+ 𝑝P

{
𝑄𝑇−1𝑖 𝑗 = 0

����� 𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

} )
. (5.32)

Equation (5.32) includes two terms with the conditional probability that the queue is empty
in frame 𝑇 − 1 when no directed connectivity from ND 𝑖 to ND 𝑗 has occurred up to frame
𝑇 − 1, P

{
𝑄𝑇−1
𝑖 𝑗

= 0
��� ∑𝑇−1

𝑡=0 𝐹
𝑡
𝑖 𝑗
= 0

}
. Substituting the result of Equation (5.32) back into

Equation (5.31) will result in both of these terms being multiplied by the probability that no
directed connectivity from ND 𝑖 to ND 𝑗 has occurred up to frame 𝑇 − 1, P

{∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

}
.

By the joint probability relation in Equation (5.30), both of these terms will become the
joint probability of the two events, P

{
𝑄𝑇−1
𝑖 𝑗

= 0,
∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

}
. Thus, substituting the result

of equation (5.32) into equation (5.31) and simplifying with the joint probability relation
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gives

P

{
𝐹𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
=

𝑝

(
P

{
𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
− P

{
𝑄𝑇−1𝑖 𝑗 = 0,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
+ 𝑝P

{
𝑄𝑇−1𝑖 𝑗 = 0,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

} )
. (5.33)

It is clear from Equation (5.33) that the probability that no directed link from ND 𝑖 to ND
𝑗 has occurred up to frame 𝑇 − 1 and the joint probability of an empty queue in frame
𝑇 −1when∑𝑇−1

𝑡=0 𝐹
𝑡
𝑖 𝑗
= 0 are both critical to understanding the probability of initial directed

connectivity from ND 𝑖 to ND 𝑗 in frame 𝑇 . The following sections develop each of these
ideas.

5.3.2 Joint Queue Transition Probabilities
This section explores the impact of the knowledge that

∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗

= 0, on the probability
that the queue from ND 𝑖 to ND 𝑗 is empty in frame 𝑇 − 1. Consider the queue from ND
𝑖 to ND 𝑗 in frame 𝑡 = 1 when no directed link occurred in frame 𝑡 = 1 (i.e., 𝐹1

𝑖 𝑗
= 0).

The knowledge that 𝐹1
𝑖 𝑗
= 0 limits the mutually exclusive probability space of uplink RB

allocation to ND 𝑖 and downlink RB allocation to ND 𝑗 that could have occurred in frame
𝑡 = 1 to the following subspace:

1. ND 𝑖 is granted an uplink RB allocation with probability 𝑝, and ND 𝑗 is not granted
a downlink RB allocation with probability 𝑞 = 1 − 𝑝.

2. ND 𝑖 is not granted an uplink RB allocation with probability 𝑞, and ND 𝑗 is granted
a downlink RB allocation with probability 𝑝.

3. Neither ND 𝑖 or ND 𝑗 are granted a RB allocation, each with probability 𝑞.

Of these three possibilities, only the first results in a transition of 𝑄1
𝑖 𝑗
from a 0 to a 1 (recall

that all queues are empty at 𝑡 = 0). This means the joint probability that𝑄1
𝑖 𝑗
= 0 and 𝐹1

𝑖 𝑗
= 0

is equal to 𝑞𝑝 + 𝑞2. Similarly, the joint probability that 𝑄1
𝑖 𝑗
= 1 and 𝐹1

𝑖 𝑗
= 0 is equal to 𝑝𝑞.

The knowledge that 𝐹1
𝑖 𝑗
= 0 excludes the possibility that ND 𝑖 and ND 𝑗 are both granted

a RB allocation since, from Equation (5.26), this results in 𝐹1
𝑖 𝑗
= 1. This restriction on the
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RB allocations that could have occurred in frame 𝑡 = 1 directly impacts the queue state
transition probabilities in Equation (5.19). When the queue is in state 𝑒0 (i.e., the queue is
empty), the probability that the queue remains empty after one transition, 𝑟0, excludes 𝑝2

(i.e., when ND 𝑖 and ND 𝑗 are both granted a RB allocation). Thus, the restricted transition
probabilities when the queue is in state 𝑒0, denoted by (·)′, are

𝑟′0 = 𝑞𝑝 + 𝑞
2 = 𝑞(𝑝 + 𝑞) = 𝑞(𝑝 + 1 − 𝑝) = 𝑞 (5.34)

and
𝑝′0 = 𝑝𝑞. (5.35)

Similarly, when the queue is in state 𝑒𝑙 (i.e., the queue is not empty), the probability subspace
also excludes 𝑞𝑝 from transition probability 𝑞𝑙 (i.e., recall that 𝑞𝑙 is the probability that
the queue reduces by one message). This is because a queue reduction implies a link from
ND 𝑖 to ND 𝑗 occurred in some frame 2 ≤ 𝑡 ≤ 𝑇 − 1, which violates the condition that∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0. Thus, the restricted transition probabilities when the queue is in state 𝑒𝑙 are

𝑟′𝑙 = 𝑞
2, (5.36)

𝑝′𝑙 = 𝑝𝑙 = 𝑝𝑞, (5.37)

and
𝑞′𝑙 = 0. (5.38)

Restricted State Transition Matrix
Updating the state transition matrix in Equation (5.19) with the joint state transition prob-
abilities in Equations (5.34)–(5.38) gives the restricted state transition matrix, H, defined
as

H =



𝑟′0 𝑝′0 0 0 0 . . .

0 𝑟′1 𝑝′1 0 0 . . .

0 0 𝑟′2 𝑝′2 0 . . .

0 0 0 𝑟′3 𝑝′3 . . .
...

...
...

...
...

...


. (5.39)
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Note that referring to H as a state transition matrix is possibly an abuse of terminology
since the joint transition probabilities in each row sum to less than one. The first row sums
to 1 − 𝑝2, and all others sum to 1 − 𝑝2 − 𝑞𝑝. However, each row can be normalized to
conditional probabilities that sum to one by dividing by the probability that 𝐹1

𝑖 𝑗
= 0. The

first row corresponds to the queue in state 𝑒0, so the probability that 𝐹1𝑖 𝑗 = 0 is equal to
1 − 𝑝2. All others rows correspond to the queue in state 𝑒𝑙 , so probability that 𝐹1𝑖 𝑗 = 0 is
equal to 1− 𝑝2−𝑞𝑝. Higher order transition probabilities can be similarly normalized by the
probability that the

∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0 for states 𝑒0 and 𝑒𝑙 . However, recall that the conditional

queue probabilities in Equation (5.32) are converted to joint probabilities in Equation (5.33)
due to multiplication by P

{∑𝑇−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

}
. Thus, rather than normalizing the rows of H to

conditional transition probabilities (only to convert them back to joint probabilities), the
restricted state transition matrix intentionally incurs some terminological abuse.

Restricted Stochastic Queue State
Updating Equation (5.23) with the restricted queue state transition matrix from Equa-
tion (5.39) defines the restricted queue state probability vector, h, as

h𝑡−1 = s0H(𝑡−1) . (5.40)

As discussed in Section 5.2.2, the queue is empty when the network sequence begins, so
the vector of queue state probabilities at 𝑡 = 0 remains unchanged as s0 = [1, 0, 0, . . .]. It
follows that, similar to the previous argument in Section 5.2.2, the joint probability that the
queue is empty and that no directed link from ND 𝑖 to ND 𝑗 has occurred up to frame 𝑇 − 1
is equal to the first element of the restricted queue state probability vector, denoted ℎ𝑡−10 , at
frame 𝑇 − 1, given by

P

{
𝑄𝑇−1𝑖 𝑗 = 0,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0
}
= ℎ𝑇−10 (5.41)

It is clear fromEquations (5.39) and (5.40) that raisingH to the (𝑡−1) power andmultiplying
by s0 gives

ℎ𝑡−10 = 𝑟
′(𝑡−1)
0 = 𝑞 (𝑡−1) . (5.42)

Thus, the joint probability of an empty queue in frame 𝑇 − 1, subject to the constraint of no
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prior directed connectivity from ND 𝑖 to ND 𝑗 , is

P

{
𝑄𝑇−1𝑖 𝑗 = 0,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0
}
= 𝑞 (𝑇−1) . (5.43)

5.3.3 Probability Mass Function
Equipped with the result of the joint queue probability from Equation (5.43), this section
derives the probability that no directed link from ND 𝑖 to ND 𝑗 has occurred up to frame
𝑇 − 1, and develops the PMF for initial directed connectivity between two NDs.

Recall the branching conceptualization described at the beginning of Section 5.3. Since link
establishment from ND 𝑖 to ND 𝑗 is a binary proposition (either it occurs or it does not),
the joint probability that no directed link occurs from ND 𝑖 to ND 𝑗 up to frame 𝑇 − 1 can
be defined as the complement of equation Equation (5.33) with respect to the set of NDs
between which no directed link has occurred up to frame 𝑇 −2 (i.e., the decision tree branch
where

∑𝑇−2
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0).

Consider frame 𝑡 = 2 in Figure 5.3. The probability of the branch of two consecutive zeros
in Frame 2 (top branch) can be found by subtracting the probability of the 0–1 branch of
Frame 2 from the zero branch of Frame 1. Expressed mathematically, the probability that
no directed link occurs from ND 𝑖 to ND 𝑗 up to frame 𝑡 = 2 is given by

P

{ 2∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
= P

{
𝐹1𝑖 𝑗 = 0

}
− P

{
𝐹2𝑖 𝑗 = 1, 𝐹

1
𝑖 𝑗 = 0

}
(5.44)

Generalizing this to an arbitrary frame, 𝑇 − 1, gives

P

{
𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
= P

{
𝑇−2∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
− P

{
𝐹𝑇−1𝑖 𝑗 = 1,

𝑇−2∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}
. (5.45)

Substituting the results of Equations (5.43) and (5.45) into Equation (5.33) yields a recursive
expression for the probability that a directed link from ND 𝑖 to ND 𝑗 is first established in
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frame 𝑇 , given by

P

{
𝐹𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0
}
=

𝑝

(
P

{𝑇−2∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0
}
− P

{
𝐹𝑇−1𝑖 𝑗 = 1,

𝑇−2∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0
}
− 𝑞𝑇−1 + 𝑝𝑞𝑇−1

)
. (5.46)

Thus, given a set of NOMA network parameters, Equations (5.26) and (5.46) provide the
basis to define the PMF for the frame 𝑘 in which a directed link between ND 𝑖 and ND 𝑗 is
first established,

f𝐾 [𝑘] =



0 , 𝑘 = 0

𝑝2 , 𝑘 = 1

𝑝
(
P
{ ∑𝑘−1

𝑡=0 𝐹
𝑡
𝑖 𝑗
= 0

}
−𝑞𝑘−1 + 𝑝𝑞𝑘−1

)
, 𝑘 ≥ 2

. (5.47)

One can imply from thePMFdefinition that theP
{
𝐹0
𝑖 𝑗
= 0

}
= 1, and theP

{
𝐹1
𝑖 𝑗
= 0

}
= 1−𝑝2.

These definitions are both consistent with the constraints that there is no connectivity
between NDs at the beginning of the network sequence and, correspondingly, that all
queues are empty at the beginning of the network sequence.

5.3.4 Discussion
Intuitively, increasing RB availability (via the overloading ratio) increases the connectivity
occurring between NDs in each frame, and reduces the time to initial unidirectional connec-
tivity. The result in Equation (5.47) confirms this intuition, as shown by comparison of the
resulting PMFs for networks with 10,000 NDs, 1,000 RBs, and 𝑧 ∈ {2, 3, 4} in Figure 5.4.
For example, the probability of initial directed connectivity from ND 𝑖 to ND 𝑗 in the
third frame (i.e., 𝑘 = 3) is 0.0768 when 𝑧 = 2, but increases to 0.1728 when 𝑧 = 4. Thus,
similar to the analysis of directed connectivity in each frame in Section 5.2, the network
demonstrates more robust temporal connectivity as the overloading ratio increases.

As referenced in the introduction, these results are applicable for NOMA networks support-
ing federated learning applications. Federated learning systems partition the training data
or model parameters among NDs for local computation, and then exchange all results for
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Figure 5.4. PMF comparison for initial directed connectivity in a network with
10,000 NDs, 1,000 RBs, and overloading ratios 𝑧 ∈ {2, 3, 4}. Source: [65].
© 2022 IEEE.

model convergence [31]. Consequently, the time required to achieve pairwise communica-
tions between all NDs (i.e., a complete graph) is an important factor in evaluating the impact
of network design on application performance. Additionally, some federated learning ap-
proaches only require a subset ofNDs to exchange local computations for convergence [100];
hence, considering each computational iteration/epoch (leading to convergence) as the be-
ginning of a network sequence, these results provide a stochastic understanding of when a
sufficient number of NDs will have communicated to achieve algorithmic convergence.
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5.4 Probability of Time Window between Unidirectional
Connectivity

In the same way that understanding how soon to expect connectivity between two NDs is
important, characterizing the amount of time between connectivity events is also important.
The time “window” between directed connectivity from ND 𝑖 to ND 𝑗 is particularly
important for mMTC and URLLC network use-cases. A mMTC use case might include
large sensor deployments or IoT applications in which a large number of NDs have periodic
reporting requirements to an automated information fusion center [101]. A use-case inwhich
the mMTC deployment is supporting closed-loop control algorithms would add URLLC
requirements as well.

The time window between directed connectivity events from ND 𝑖 to ND 𝑗 in the NOMA
temporal network model is similar to the time between node activation in the activity-driven
model, which obeys a geometric distribution [60]. This becomes evident when the behavior
of the queue is considered as the network sequence becomes long.

Recall from Equations (5.23) and (5.24) that the probability of an empty queue is a function
of the queue state transition matrix S raised to the (𝑡 − 1) power. Since all state transition
probabilities in S are positive real numbers less than one, each successive multiplication of
S by itself reduces the value of 𝑆1,1 toward zero which, by Equation (5.23), is equal to 𝑠𝑡−10 .
Expressed as a limit, 𝑠𝑡−10 approaches zero as the network sequence becomes long,

lim
𝑡→∞

𝑠𝑡−10 = 0. (5.48)

This means the probability that the queue is empty goes to zero as the network sequence
becomes long. Recall from Equation (5.29) that the P

{
𝐹 𝑡
𝑖 𝑗
= 1

}
= 𝑝(1 − 𝑠𝑡−10 + 𝑝𝑠𝑡−10 ).

Incorporating the result from Equation (5.48) into Equation (5.29) gives,

lim
𝑡→∞
P

{
𝐹 𝑡𝑖 𝑗 = 1

}
= lim
𝑡→∞

𝑝(1 − 𝑠𝑡−10 + 𝑝𝑠𝑡−10 ) = 𝑝. (5.49)

Since the probability of directed connectivity from ND 𝑖 to ND 𝑗 converges to 𝑝 as the
network sequence becomes long, the time window between directed connectivity from
ND 𝑖 to ND 𝑗 is described by a geometric probability distribution parameterized by 𝑝.
Specifically, the probability that the number of frames between directed connectivity from
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ND 𝑖 to ND 𝑗 is equal to 𝑘 is given by the PMF,

f𝐾 [𝑘] = 𝑝(1 − 𝑝)𝑘 , for 0 ≤ 𝑘 < ∞. (5.50)

However, since Equation (5.48) is a limit, the probability that the queue is empty approaches
zero, but never reaches it. Therefore, the PMF in Equation (5.50) will become increasingly
accurate as the length of the network sequence increases, but the P

{
𝐹 𝑡
𝑖 𝑗
= 1

}
never reaches

𝑝. The results in Chapter 6 further illustrate this.

5.5 Probability of Time to Initial Bidirectional Connectiv-
ity

Similar to the idea expressed at the beginning of Section 5.3, NOMA network designers
may need to consider the time required for initial bidirectional connectivity between two
NDs, as might be required for any application requiring a two-way handshake.

Initial bidirectional connectivity between ND 𝑖 and ND 𝑗 in frame 𝑇 can occur in two ways:

1. ND 𝑖 can establish directed connectivity to ND 𝑗 in some frame 0 ≤ 𝑡 ≤ 𝑇 , and ND
𝑗 establishes directed connectivity to ND 𝑖 in frame 𝑇 .

2. ND 𝑗 can establish directed connectivity to ND 𝑖 in some frame 0 ≤ 𝑡 ≤ 𝑇 , and ND 𝑖
establishes directed connectivity to ND 𝑗 in frame 𝑇 .

Establishing initial bidirectional connectivity by the first method requires that both NDs are
granted RB allocations in a way that meets the following three conditions:

1.
∑𝑇
𝑡=0 𝐹

𝑡
𝑖 𝑗
> 0

2. 𝐹𝑇
𝑗𝑖
= 1

3.
∑𝑇−1
𝑡=0 𝐹

𝑡
𝑗𝑖
= 0.

The first condition ensures that at least one directional link from ND 𝑖 to ND 𝑗 occurs in
the time interval 0 < 𝑡 ≤ 𝑇 , while the second and third conditions ensure that the first link
from ND 𝑗 to ND 𝑖 does not occur until frame 𝑇 . Reversing the order of 𝑖 and 𝑗 in each
condition provides the set of conditions required for initial bidirectional connectivity by the
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second method.

Let 𝐵𝑇
𝑖 𝑗
∈ {0, 1} denote the event of initial bidirectional connectivity in frame 𝑇 by the first

method, and define 𝐵𝑇
𝑖 𝑗
as the the logical conjunction of the three conditions,

𝐵𝑇𝑖 𝑗
def
=

𝑇∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 > 0 ∧
(
𝐹𝑇𝑗𝑖 = 1 ∧

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑗𝑖 = 0

)
, (5.51)

where ∧ denotes the logical conjunction (AND) operation. Thus, 𝐵𝑇
𝑖 𝑗
only assumes a value

of one when all three conditions are true. Correspondingly, 𝐵𝑇
𝑗𝑖
represents the event of initial

bidirectional connectivity in frame 𝑇 by the second method. The disjunction of 𝐵𝑇
𝑖 𝑗
and 𝐵𝑇

𝑗𝑖

(i.e., 𝐵𝑇
𝑖 𝑗
OR 𝐵𝑇

𝑗𝑖
) represents the event of initial bidirectional connectivity between ND 𝑖 and

ND 𝑗 in frame 𝑇 .

5.5.1 Bidirectional Connectivity Matrix
Recall that the frame connectivity matrix, F𝑡 , in Equation (5.5) is a directed adjacency
matrix that describes the connectivity achieved during frame 𝑡. The rows of F𝑡 represent the
directed connectivity fromND 𝑖 to ND 𝑗 and the columns represent the directed connectivity
from ND 𝑗 to ND 𝑖. The Hadamard product of F𝑡 with its transpose results in an undirected
symmetric adjacency matrix, A𝑡 , with elements denoted 𝐴𝑡

𝑖 𝑗
, given by

A𝑡 = F𝑡 ⊙ (F𝑡)⊤ (5.52)

where ⊤ denotes the transpose operation. Similar to 𝐵𝑇
𝑖 𝑗
, 𝐴𝑡

𝑖 𝑗
∈ {0, 1} where the value

one represents the occurrence of bidirectional connectivity in frame 𝑡, and zero represents
the converse. As a result of the matrix symmetry of A𝑡 (i.e., 𝐴𝑡

𝑖 𝑗
= 𝐴𝑡

𝑗𝑖
), establishing

initial bidirectional connectivity between ND 𝑖 and ND 𝑗 in frame 𝑇 is represented by the
conjunction of the events 𝐴𝑇

𝑖 𝑗
= 1 and

∑𝑇−1
𝑡=0 𝐴

𝑡
𝑖 𝑗
= 0.
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5.5.2 Probability of Initial Bidirectional Connectivity
The logical representations of initial bidirectional connectivity between ND 𝑖 and ND 𝑗

developed in Sections 5.5 and 5.5.1 lead to the logical expression,

(
𝐴𝑇𝑖 𝑗 = 1

)
∧

(
𝑇−1∑︁
𝑡=0

𝐴𝑡𝑖 𝑗 = 0

)
=

(
𝐵𝑇𝑖 𝑗 = 1

)
∨

(
𝐵𝑇𝑗𝑖 = 1

)
, (5.53)

where ∨ denotes the logical disjunction (OR) operation. Considering the logical expression
in Equation (5.53) stochastically gives the probability of initial bidirectional connectivity
between ND 𝑖 and ND 𝑗 in frame 𝑇 ,

P

{
𝐴𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐴𝑡𝑖 𝑗 = 0

}
= P

{
𝐵𝑇𝑖 𝑗 = 1 ∪ 𝐵𝑇𝑗𝑖 = 1

}
. (5.54)

Expanding the the right side of Equation (5.54) using the relation P {𝐴1 ∪ 𝐴2} = P {𝐴1} +
P {𝐴2} − P {𝐴1, 𝐴2}, introduced in Section 5.2.3 from [84] and [85], gives

P

{
𝐴𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐴𝑡𝑖 𝑗 = 0

}
= P

{
𝐵𝑇𝑖 𝑗 = 1

}
+ P

{
𝐵𝑇𝑗𝑖 = 1

}
− P

{
𝐵𝑇𝑖 𝑗 = 1, 𝐵

𝑇
𝑗𝑖 = 1

}
, (5.55)

which provides three separate terms for examination.

First, the P
{
𝐵𝑇
𝑖 𝑗
= 1

}
is expressed by rewriting Equation (5.51) as a joint probability,

P
{
𝐵𝑇𝑖 𝑗 = 1

}
= P

{
𝑇∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 > 0, 𝐹
𝑇
𝑗𝑖 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑗𝑖 = 0

}
. (5.56)

Notice that the second are third terms on the right side of Equation (5.56) are in same form
as the probability of initial directed connectivity from ND 𝑖 to ND 𝑗 in Equation (5.46).
The only difference is that ND 𝑖 and ND 𝑗 are reversed (i.e., this expression considers
the connectivity from ND 𝑗 to ND 𝑖). Additionally, the first term on the right side of
Equation (5.56) considers directed connectivity from ND 𝑖 to ND 𝑗 . It follows from the
analysis in Sections 5.2 and 5.3 that the directed connectivity from ND 𝑖 to ND 𝑗 is
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statistically independent from the directed connectivity from ND 𝑗 to ND 𝑖, resulting in

P
{
𝐵𝑇𝑖 𝑗 = 1

}
=

(
1 − P

{
𝑇∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

} )
P

{
𝐹𝑇𝑗𝑖 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑗𝑖 = 0

}
(5.57)

where P
{∑𝑇

𝑡=0 𝐹
𝑡
𝑖 𝑗
> 0

}
= 1−P

{∑𝑇
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

}
, and all probabilistic terms can be calculated

from Equations (5.45) and (5.46).

Next, note that reversing 𝑖 and 𝑗 in Equation (5.57) does not change the result since the
probabilities are equal ∀𝐹 𝑡

𝑖 𝑗
(for 𝑖 ≠ 𝑗), which gives

P
{
𝐵𝑇𝑖 𝑗 = 1

}
= P

{
𝐵𝑇𝑗𝑖 = 1

}
. (5.58)

Next, from the definition in Equation (5.51), the joint event that 𝐵𝑇
𝑖 𝑗
= 1 and 𝐵𝑇

𝑗𝑖
= 1 can

only occur if the initial directed connectivity from ND 𝑖 to ND 𝑗 and the initial directed
connectivity from ND 𝑗 to ND 𝑖 both happen in frame 𝑇 . Both of these events are described
by Equation (5.46). Given the independence of these events, and that reversing 𝑖 and 𝑗
in Equation (5.46) does not change the result, the probability is given by the square of
Equation (5.46),

P
{
𝐵𝑇𝑖 𝑗 = 1, 𝐵

𝑇
𝑗𝑖 = 1

}
= P

{
𝐹𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}2
. (5.59)

Finally, substituting the results of Equations (5.57), (5.58), and (5.59) back into Equa-
tion (5.55) gives

P

{
𝐴𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐴𝑡𝑖 𝑗 = 0

}
=

2

(
1 − P

{
𝑇∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

} )
P

{
𝐹𝑇𝑗𝑖 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑗𝑖 = 0

}
− P

{
𝐹𝑇𝑖 𝑗 = 1,

𝑇−1∑︁
𝑡=0

𝐹 𝑡𝑖 𝑗 = 0

}2
. (5.60)

Thus, given a set of NOMA network parameters, Equation (5.60) provide the basis to define
the PMF for the frame 𝑘 in which bidirectional connectivity between ND 𝑖 and ND 𝑗 is first
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established,

f𝐾 [𝑘] =



0 , 𝑘 = 0

2
(
1 − P

{ ∑𝑘
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

})
P
{
𝐹𝑘
𝑗𝑖
= 1,

∑𝑘−1
𝑡=0 𝐹

𝑡
𝑗𝑖
= 0

}
−P

{
𝐹𝑘
𝑖 𝑗
= 1,

∑𝑘−1
𝑡=0 𝐹

𝑡
𝑖 𝑗
= 0

}2
, 𝑘 ≥ 1

. (5.61)

5.5.3 Discussion
Similar to the results for initial unidirectional connectivity in Section 5.3, increasing RB
availability via overloading reduces the time to initial bidirectional connectivity. A compar-
ison of the PMFs resulting from Equation (5.61) for networks with 100 NDs, 10 RBs, and
overloading ratios 𝑧 ∈ {2, 3, 4} is depicted in Figure 5.5. Notice that, when compared to
Figure 5.4, the peak of each distribution is shifted to the right and the tail is slightly longer.
This reflects the larger number of frames required to achieve directed connectivity in both
directions.

The initial bidirectional connectivity results are consistent with the analytical development
in Sections 5.2–5.4, and demonstrate the relationship between robust temporal connectivity
and overloading variability. These results have general applicability for any network service
or application that requires bidirectional communication, such as a Transmission Control
Protocol (TCP) synchronization and acknowledgement, or key exchange for authentication
and encryption.
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Figure 5.5. PMF comparison for initial bidirectional connectivity in a network
with 100 NDs, 10 RBs, and overloading ratios 𝑧 ∈ {2, 3, 4}.

5.6 Probability of Minimum Time to Complete Bidirec-
tional Connectivity

This section examines the minimum number of frames required to achieve a complete affine
graph and the probability of occurrence. Recall from Chapter 2.3.2 that that the affine graph
provides a temporal measure of bidirectional connectivity between ND pairs in the network.
This is because the affine graph is the static projection of all temporal strongly connected
node pairs in a time interval, and temporal strongly connected nodes are those that each
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have a temporal path to the other. Thus, the affine graph shows all pairwise connected
nodes over a defined time interval. Pairwise ND communication is important in distributed
computing; thus, similar to Sections 5.3 and 5.5, this analysis relates NOMA overloading
to the supported convergence time of distributed computing applications that could be
deployed on 5G or B5G NTNs [31], [102].

A complete affine graph occurs when the sum of all positive elements from all bidirectional
connectivity adjacency matrices over a specified number of frames, 𝑇 , is equal to 𝑚(𝑚−1),

𝑇∑︁
𝑡=1

1Z+
(
A𝑡

)
= 𝑚(𝑚 − 1), (5.62)

where A𝑡 is defined in Equation (5.52). The minimum number of frames required to form
a complete affine graph, denoted 𝐹𝑚𝑖𝑛, is the sum of the number of frames required for all
NDs to be granted an uplink RB allocation, and the number of frames required for all NDs
to be granted a downlink RB allocation after all have been granted an uplink RB allocation.
The corresponding probability of this event depends on the NOMA network parameters (𝑚
NDs, 𝑛 RBs, and overloading ratio 𝑧) and includes the following possible cases.

5.6.1 Case 1: 𝑧𝑛 = 𝑚 − 1
This case occurs when all but one ND are granted a RB allocation in each subframe. A
complete affine graph can be achieved in two frames with probability

P {𝐹𝑚𝑖𝑛 = 2} = 𝑝2(1 − 𝑝), (5.63)

where 𝑝 is the probability of RB allocation for an individual ND defined in Equation (5.10).

Consider the case in which a single ND, 𝑖, is not granted a RB allocation in the first uplink
subframe, but is granted a RB allocation in the first downlink subframe. This means ND
𝑖 has received transmissions from all other NDs (since ND 𝑖 does not transmit to itself).
If ND 𝑖 is granted an uplink RB allocation in the second uplink subframe, then all NDs
have been granted an uplink RB allocation. Since ND 𝑖 has already received transmissions
from all other NDs, it does not require an additional downlink RB allocation, so if all other
𝑚 − 1 NDs are granted a downlink RB allocation in the second downlink subframe, then a
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complete affine graph will have been achieved. The probability of this sequence of frames
is characterized entirely by the RB allocation probability, 𝑝, to ND 𝑖.

5.6.2 Case 2: 𝑚2 ≤ 𝑧𝑛 < 𝑚 − 1
This case occurs when at least half of the NDs in the network are granted a RB allocation
in each subframe, but less than 𝑚 − 1. A complete affine graph can be achieved in three
frames with probability

P {𝐹𝑚𝑖𝑛 = 3} =
[ ( 𝑧𝑛
2𝑧𝑛−𝑚

)(𝑚
𝑧𝑛

) ]2
. (5.64)

In this case, a minimum of two uplink subframes are required for all NDs to be granted
at least one uplink RB allocation. Similarly, a minimum of two downlink subframes are
required for all NDs to be granted at least one downlink RB allocation. All NDs must be
granted a downlink RB allocation after all NDs have been granted an uplink RB allocation
in order to receive a transmission directly in the same frame, or indirectly from the message
queue. Thus, the downlink RB allocation must begin in the second downlink subframe, and
conclude in the third downlink subframe.

Consider a NOMA wireless network parameterized by 𝑚 = 6, 𝑛 = 2, and 𝑧 = 2. In the
first frame, the probability of selecting four NDs which have not yet been granted an uplink
RB allocation is equal to one since the network sequence has just begun. In the second
frame, the 𝑚 − 𝑧𝑛 = 2 NDs that were not granted an uplink RB allocation in the first uplink
subframe must be selected, as well as 𝑧𝑛− (𝑚− 𝑧𝑛) = 2 of the 𝑧𝑛 = 4NDs that were granted
an uplink RB allocation in the first uplink subframe. The probability of this event is(𝑚−𝑧𝑛

𝑚−𝑧𝑛
) ( 𝑧𝑛
𝑧𝑛−(𝑚−𝑧𝑛)

)(𝑚
𝑧𝑛

) =

( 𝑧𝑛
2𝑧𝑛−𝑚

)(𝑚
𝑧𝑛

) =

(2
2
) (4
2
)(6

4
) =

(4
2
)(6
4
) .

The second downlink subframe is the first opportunity for NDs to be granted a downlink RB
allocation after all NDs have been granted an uplink RB allocation. Thus, the RB allocation
sequence that is required for the uplink in the first and second frames must repeat for the
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downlink in the second and third frames to achieve a complete affine graph, which gives

P {𝐹𝑚𝑖𝑛 = 3} =
[ (4
2
)(6
4
) ]2 .

Generalizing this to any combination of NDs, RBs, and overloading ratio that meet these
conditions results in Equation 5.64. Note that when 𝑧𝑛 = 𝑚

2 , Equation (5.64) reduces to

P {𝐹𝑚𝑖𝑛 = 3} =
(
𝑚

𝑚/2

)−2
. (5.65)

5.6.3 Case 3: 1 < 𝑧𝑛 < 𝑚
2

This case occurs when more than one, but less than half, of the NDs are granted a RB
allocation in each subframe. There are three sub-cases within Case 3.

Subcase 3.1: 𝑚 mod 𝑧𝑛 = 0
This occurs when the product of RBs and the overloading ratio divide evenly into the number
of NDs. The number of frames required for all NDs to be granted a RB allocation is equal to
𝑁𝐷
𝑧𝑛
, and the downlink RB allocation can begin in the same frame that all NDs are granted

an uplink allocation. Hence, the minimum number of frames required to achieve a complete
affine graph is given by

𝐹𝑚𝑖𝑛 =
2𝑚
𝑧𝑛

− 1. (5.66)

The probability of this event is a product of the hypergeometric distribution evaluated with
constant population (𝑚), sample size (𝑧𝑛), and desired number of successes (𝑧𝑛), but a
decreasing number of known successes in the population. The NDs that have not yet been
granted an uplink or downlink RB allocation are the number of successes in the population,
and this value is decremented by 𝑧𝑛 after each subframe. The probability of selecting 𝑧𝑛
NDs that have not been granted a RB allocation in the first uplink subframe is one since
no NDs have been granted an RB allocation at the beginning of the network sequence. In
the second uplink subframe, 𝑧𝑛 of the 𝑚 − 𝑧𝑛 NDs that have not been granted an uplink
RB allocation must be selected. This decrementing operation continues until all NDs have
been granted an uplink RB allocation, and then repeats for the downlink, resulting in a

88



probability given by

P

{
𝐹𝑚𝑖𝑛 =

2𝑚
𝑧𝑛

− 1
}
=

𝑚
𝑧𝑛
−1∏

𝑖=1

(𝑚−𝑖(𝑧𝑛)
𝑧𝑛

)2(𝑚
𝑧𝑛

)2 . (5.67)

Since no NDs that have been granted a RB allocation are selected again, the second term in
the numerator from Equation (4.17) that accounts for the selection of failures reduces to one
(since none are selected in each frame) and the square operation accounts for the repetition
of the process in the uplink and downlink.

Subcase 3.2: 𝑚 mod 𝑧𝑛 = 1
This occurs when any multiple of the product of RBs and the overloading ratio is one less
than the number of NDs. The logic for the minimum frames required for a complete affine
graph is the same as Case 1, except there are more frames prior to reaching the frame in
which only a single ND has not been granted an uplink RB allocation. Accounting for those
additional frames, the minimum number of frames required to achieve a complete affine
graph is given by

𝐹𝑚𝑖𝑛 = 2
⌊
𝑚

𝑧𝑛

⌋
. (5.68)

The probability formulation for this case is similar to Subcase 3.1 in that a product of
hypergeometric distributions is evaluated at decrementing values of the number of successes
in the population. The primary differences occur in downlink subframe number

⌊
𝑚
𝑧𝑛

⌋
and

in uplink subframe number
⌊
𝑚
𝑧𝑛

⌋
+ 1, which immediately follows. In downlink subframe

number
⌊
𝑚
𝑧𝑛

⌋
, all NDs have been granted an uplink RB allocation except ND 𝑖. Thus, ND 𝑖

must be granted a downlink RB allocation in this subframe to have received transmissions
from all other NDs. This occurs with probability

(𝑚−1
𝑧𝑛−1

)
/
(𝑚
𝑧𝑛

)
. Similarly, ND 𝑖 must receive

an uplink RB allocation in the following uplink subframe so all remaining 𝑚 − 1 NDs can
receive fromND 𝑖 in the following

⌊
𝑚
𝑧𝑛

⌋
subframes. This also occurs occurs with probability(𝑚−1

𝑧𝑛−1
)
/
(𝑚
𝑧𝑛

)
. Thus, the total probability of achieving a complete affine graph in this subcase

is given by

P

{
𝐹𝑚𝑖𝑛 = 2

⌊
𝑚

𝑧𝑛

⌋}
=

(𝑚−1
𝑧𝑛−1

)2(𝑚
𝑧𝑛

)2𝛼+1 𝛼−1∏
𝑖=1

(
𝑚 − 𝑖𝑧𝑛
𝑧𝑛

) 𝛼−1∏
𝑗=0

(
𝑚 − 1 − 𝑗 𝑧𝑛

𝑧𝑛

)
, (5.69)
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where, on the right side of the equation, all denominators of the product are collected
into the denominator of the first term, the second and third terms are the decrementing
hypergeometric distributions for the uplink and downlink, respectively, and 𝛼 =

⌊
𝑚
𝑧𝑛

⌋
.

Subcase 3.3: 𝑚 mod 𝑧𝑛 > 1
This occurs when any multiple of the product of RBs and the overloading ratio does not fall
in either Subcase 3.1 or 3.2. The minimum number of frames required to achieve a complete
affine graph is given by

𝐹𝑚𝑖𝑛 = 2
⌈
𝑚

𝑧𝑛

⌉
− 1. (5.70)

The probability of achieving the affine graph in the minimum number of frames can be
directly calculated, but does not have a concise expression. Rather, all possible ways in
which all NDs are granted a RB allocation in the minimum number of frames must be
enumerated, the probability of each of these possibilities calculated, and the pairwise
multiplication of all probabilities must be summed to account for all possible uplink and
downlink combinations of RB allocations.

5.7 Summary
In this chapter, the mathematical model of connectivity for the NOMA graph model and
network ensemble were presented, and stochastic expressions for temporal connectivity
were developed. The key results include the:

• Probability of Temporal Connectivity in Each Frame
• Probability of Time to Initial Unidirectional Connectivity
• Probability of Time Window Between Unidirectional Connectivity
• Probability of Time to Initial Bidirectional Connectivity
• Probability of Minimum Time to Complete Bidirectional Connectivity.

These results provide the basis for a stochastic characterization of robustness, measured
through time-varying connectivity, in a NOMA wireless network with random and uniform
RB allocation across all NDs.
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CHAPTER 6:
Simulation Results

This chapter discusses the simulations conducted to test the internal validity of the analytical
results developed in Chapter 5.

The text includes expanded versions of previously published material in

and

B. Pimentel, A. Bordetsky, and R. Gera, “Robustness in nonorthogonal mul-
tiple access 5G networks,” in Proceedings of the 55th Hawaii International 
Conference on System Sciences, 2022, pp. 7444–7453.

B. Pimentel, A. Bordetsky, R. Gera, A. Conti, and M. Z. Win, “Temporal 
connectivity as a robustness measure in NOMA wireless networks,” in IEEE 
International Conference on Communications, 2022, pp. 3911–3917. © 2022 
IEEE.

All previously published tables from these two publications are credited with a citation in
the caption.

6.1 Simulation Environment and Analysis Methods
All simulations for this research are conducted in the MATLAB® technical computing
environment.7Given a set ofNOMAnetwork parameters (𝑚NDs, 𝑛RBs, and an overloading
ratio 𝑧), the network ensemble is generated as the set of all unique binary degree vectors,
and temporal network sequences are generated through random uniform sampling from
the network ensemble, as described in Chapter 3.2. Connectivity between NDs resulting
from the randomly sampled temporal network sequence is calculated according to the
mathematical model of connectivity in Chapter 5.1.

7Information about obtaining the MATLAB® code and simulation data is available in the supplemental.
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The error between the analytical and simulation results for probabilistic connectivity in
each frame is measured by the mean absolute deviation (mAD) across all simulated frames,
and the maximum absolute deviation (MAD) of any simulated frame [96]. The mAD and
MAD error statistics are appropriate because they characterize the number of links that are
incorrectly predicted by the analytical results. This includes links that are predicted but do
not occur, and links that exceed the number predicted. The error between the analytical and
simulation results for the time window between directed connectivity and minimum time to
complete bidirectional connectivity are discussed in Sections 6.4 and 6.6, respectively.

Finally, for the analytical results from Chapter 5.3–5.5 that produce PMFs, the similarity
between the analytical and simulated probability distributions is measured using the Jensen-
Shannon divergence (JSD) [103], given by

JSD(𝑝1 | |𝑝2) =
1
2
D𝐾𝐿 (𝑝1 | |𝑀) + 1

2
D𝐾𝐿 (𝑝2 | |𝑀), (6.1)

where 𝑝1 and 𝑝1 are discrete probability distributions, 𝑀 = (𝑝1 + 𝑝2)/2, and D𝐾𝐿 is the
Kullback-Leibler divergence defined as

D𝐾𝐿 (𝑝1 | |𝑝2) =
∑︁
𝑘∈K

𝑝1(𝑘) log2(𝑝1(𝑘)/𝑝2(𝑘)). (6.2)

The JSD measure subtracts the individual Shannon entropy of each distribution from the
entropy of the mixture of the distributions. Thus, the JSD is equal to zero if the two
distributions are identical, and small JSD values indicate highly similar distributions.

6.2 Directed Connectivity in Each Frame
The probability of directed connectivity in each frame given in Equation (5.29) is tested
across a range of network sizes and overloading ratios. The simulation networks are com-
posed of 𝑚 ∈ {100, 1000, 10000} NDs, 𝑛 = 0.1𝑚 RBs, and overloading ratios 𝑧 ∈ {2, 3, 4},
where each network size is simulated with each overloading ratio. We found the overloading
ratio 𝑧 = 2 as the most common in our literature review (with 𝑧 = 3 as the highest observed),
so this research considers 𝑧 ∈ {2, 3, 4}. Network sequences of 100 frames are generated for
each set of network parameters through uniform random sampling from the network ensem-
ble. The number of directed links from ND 𝑖 to ND 𝑗 occurring in each frame are recorded,
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and this process is repeated 1,000 times for each set of network parameters. Experimental
probabilities for each frame are generated by averaging across all trials for each frame and
normalizing by 𝑚(𝑚 − 1) possible links.

The error results for unidirectional connectivity in each frame are summarized in Table 6.1.
The mAD and MAD error statistics both firmly support the accuracy of the analytical
predictions with no simulation error exceeding .02%. The JSD is not included for these
simulations because the results are not probability distributions, and the JSD is a measure
of distribution similarity.8

In more practical terms, consider the number of incorrectly predicted links by multiplying
the mAD and MAD by the number of potential 𝑖- 𝑗 links in each network, 𝑚(𝑚 − 1). Doing
so shows that, on average, the analytical prediction errs by approximately 2 out of 9,900
links per frame for the network of 100 NDs, and no error is greater than 8 links. Similarly,
for the network of 10,000 NDs, the largest mean error is 2,090 links, and the maximum
error is less than 7,090 out of 99,990,000 links per frame.

Table 6.1. Simulation Error Results for the Probability of Directed Connec-
tivity in Each Frame.

Network Parameters Error
NDs (𝑚) Overloading (𝑧) Mean AD Max. AD

2 1.61 × 10−4 5.69 × 10−4
100 3 1.74 × 10−4 4.99 × 10−4

4 1.95 × 10−4 7.64 × 10−4
2 4.76 × 10−5 1.90 × 10−4

1,000 3 5.74 × 10−5 2.90 × 10−4
4 5.24 × 10−5 1.53 × 10−4
2 1.60 × 10−5 6.40 × 10−5

10,000 3 1.54 × 10−5 5.83 × 10−5
4 2.09 × 10−5 7.80 × 10−5

8However, each individual frame can be considered a Bernoulli PMF parameterized by 𝑝 = P
{
𝐹𝑘
𝑖 𝑗
= 1

}
.
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A visual comparison of the analytical and simulation results are shown in Figures 6.1 and
6.2. The probabilities predicted by Equation (5.29) are denoted by blue circles, and the
experimental probabilities recorded from the simulation are denoted by red “x’s.”

Figure 6.1. Probability of directed connectivity in the first 100 frames of a
temporal network sequence. The network includes 100 NDs, 10 RBs, and an
overloading ratio 𝑧 = 2.
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Figure 6.2. Probability of directed connectivity in the first 100 frames of a
temporal network sequence. The network includes 10,000 NDs, 1,000 RBs,
and an overloading ratio 𝑧 = 4.

6.2.1 Error Analysis
As expected, all measures of error decrease as the network size increases. This is due the
increased 𝑖- 𝑗 link sample size in each frame. The 100 ND network only has 9,900 potential
links to measure in each frame, whereas the 10,000 ND network has 99,990,000 potential
links per frame. By the law of large numbers, the sample mean converges to the distribution
mean as the sample grows largewhich, in this case, is the probability of directed connectivity
in each frame [84].

Perhaps counter-intuitively, themADandMADboth generally increase as 𝑧 increaseswithin
each fixed network size 𝑚. This is a result of the increased variability, or uncertainty, in
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RB allocation caused by the composition of the network ensemble. The uncertainty can be
quantified by Shannon entropy, 𝐻, defined as

𝐻 = −
∑︁
𝑖

𝑝𝑖 log 𝑝𝑖, (6.3)

where 𝑝𝑖 is the probability of each event [53].

Recall from Chapter 3.2 that the network ensemble, 𝐷, is composed of all unique binary
degree vectorswith 𝑧𝑛 ones and𝑚−𝑧𝑛 zeros, and the probability of randomuniform selection
of any degree vector from the ensemble is equal to |𝐷 |−1. Substituting the probability of
degree vector selection into Equation (6.3), the entropy of the distribution of degree vectors
is given by

𝐻 = −
|𝐷 |∑︁
1

|𝐷 |−1 log |𝐷 |−1 = − log 1|𝐷 | . (6.4)

It is clear from Equation (6.4) that the entropy increases as the cardinality of 𝐷 increases.
Recall from Equation (3.5) that the cardinality of 𝐷 is equal to the binomial coefficient

(𝑚
𝑧𝑛

)
,

which reaches a maximum when 𝑧𝑛 = 𝑚/2. Therefore, the entropy of the uniform random
selection of degree vectors from the network ensemble is maximized when 𝑧𝑛 = 𝑚/2. A
maximum entropy network ensemble affords each ND a 50% probability of RB allocation
in each frame, resulting in an equal probability that NDs receive equal or disproportionate
RB allocations over time. Thus, the probability that individual frames in the simulation
return a number of links that is farther from the analytically predicted value increases as the
network ensemble approaches maximum entropy. This is reflected in the mAD and MAD
statistics as 𝑚 and 𝑛 are held constant for increasing 𝑧.

6.3 Time to Initial Unidirectional Connectivity
The probability of initial directed connectivity in each frame given in Equation (5.47) is
tested across a range of network sizes and overloading ratios. Similar to the simulation net-
works for directed connectivity in each frame, the simulation networks for initial directed
connectivity are composed of𝑚 ∈ {100, 1000, 10000}NDs, 𝑛 = 0.1𝑚 RBs, and overloading
ratios 𝑧 ∈ {2, 3, 4}, where each network size is simulatedwith each overloading ratio. In con-
trast to the simulation networks for directed connectivity in each frame, network sequences of
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𝑁 ∈ {100, 60, 45} frames are generated for each set of network parameters through uniform
random sampling from the network ensemble where (𝑧, 𝑁) ∈ {(2, 100), (3, 60), (4, 45)}.9
The number of directed links from ND 𝑖 to ND 𝑗 occurring for the first time in each frame
(1 to 𝑁) are recorded and this process is repeated 1,000 times for each set of network
parameters. Experimental PMFs are generated by averaging across all trials for each frame
and normalizing by 𝑚(𝑚 − 1) possible links.

The error and distribution similarity results for initial unidirectional connectivity are sum-
marized in Table 6.2. The error statistics behave in a similar manner to the error of directed
connectivity in each frame discussed in Section 6.2. The error decreases as the network
size increases, but the mAD and MAD increase with 𝑧 within each fixed network size.
However, the JSD decreases as overloading increases within each network size because the
probability of initial unidirectional connectivity between each ND pair converges to zero in
a smaller number of frames due to the increased availability of transmission resources (i.e.,
the number of frames over which the PMF is evaluated decreases as 𝑧 increases, so there
are fewer opportunities for dissimilarity).

In terms of the number of incorrectly predicted links, the analytical PMF errs by approxi-
mately 1 out of 9,900 links in each frame for the network of 100 NDs, and no error is greater
than 12 links. Similarly, for the network of 10,000 NDs, the largest mean error is 930 links,
and the maximum error is less than 8,002 out of 99,990,000 potential links in each frame.
The error results and distribution similarity analysis lend strong support for the accuracy of
the analytical PMF.

Plots comparing the predicted and simulation-generated PMFs across all tested overloading
ratios for a 10,000 ND network are depicted in Fig. 6.3–6.5. In each plot, the analytical
PMF for the probability of initial directed connectivity is denoted by blue stems, and the
simulation PMF is indicated by red “x’s.”. Support for the accuracy of the analytical results
is visually apparent from the close alignment of the PMFs in Figures 6.3–6.5.

9The number of frames decreases as overloading increases because fewer frames are required for the
distribution tail to converge to zero.
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Table 6.2. Simulation Error and Distribution Similarity for Initial Unidirec-
tional Connectivity. Source: [76]. © 2022 IEEE

Network Parameters Error
NDs (𝑚) Overloading (𝑧) Mean AD Max. AD JSD

2 6.54 × 10−5 1.03 × 10−3 2.66 × 10−5
100 3 7.57 × 10−5 7.47 × 10−4 2.48 × 10−5

4 1.29 × 10−4 1.17 × 10−3 2.34 × 10−5
2 1.99 × 10−5 1.62 × 10−4 2.94 × 10−6

1,000 3 2.47 × 10−5 2.01 × 10−4 2.23 × 10−6
4 2.75 × 10−5 2.69 × 10−4 2.16 × 10−6
2 7.51 × 10−6 7.46 × 10−5 3.15 × 10−7

10,000 3 7.75 × 10−6 8.00 × 10−5 2.47 × 10−7
4 9.30 × 10−6 7.73 × 10−5 1.20 × 10−7

Figure 6.3. Comparison of analytical and simulation PMFs for initial unidi-
rectional connectivity with 10,000 NDs, 1,000 RBs, and overloading 𝑧 = 2.
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Figure 6.4. Comparison of analytical and simulation PMFs for initial unidi-
rectional connectivity with 10,000 NDs, 1,000 RBs, and overloading 𝑧 = 3.

Figure 6.5. Comparison of analytical and simulation PMFs for initial unidi-
rectional connectivity with 10,000 NDs, 1,000 RBs, and overloading 𝑧 = 4.
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6.4 Time Window between Unidirectional Connectivity
The probability of the number of frames between directed connectivity from ND 𝑖 to ND 𝑗

(i.e., time window or inter-event time) specified in Equation (5.50) is tested across a range
of network sequence lengths and overloading ratios. The simulation networks are composed
of 𝑚 = 1000 NDs, 𝑛 = 0.1𝑚 RBs, overloading ratios 𝑧 ∈ {2, 3, 4}, and network sequence
lengths 𝑁 ∈ {1000, 5000, 10000, 20000} frames, where each network sequence length is
simulated with each overloading ratio. The network size is held constant at 1,000 NDs to
produce a meaningful sample, but ensure a tractable computation time.

The number of frames between each occurrence of directed connectivity from ND 𝑖 to ND
𝑗 are recorded, and a PMF is generated by normalizing the total count of each window
size by the total number of inter-event times. Each of the network sequences is only run
once due to the large sample size produced in one simulation run. The smallest number of
inter-event data points produced is 185, 209, 137 for (𝑧, 𝑁) = (2, 1000), which is more than
sufficient to generate a probability distribution. The number of inter-event data points only
increases as the network sequence lengthens, and the overloading ratio increases, resulting
in the simulation with (𝑧, 𝑁) = (4, 20000) producing 7,913,212,170 inter-event data points.

The error for the time window between directed connectivity events is considered through
the mAD, root mean squared error (RMSE), and JSD. Unlike the PMFs describing the
probability of initial connectivity in each frame, the maximum absolute deviation is not
considered because the inter-event times are taken over the entire network sequence rather
than the possible number of links each in frame. Thus, the maximum absolute deviation
has less meaning since it does not convey the largest link prediction error of any frame
when applied to the distribution of inter-event times. The mean absolute deviation is still
considered as a complement to the RMSE to measure overall distribution error.

The error and distribution similarity results for the timewindow between directed connectiv-
ity events are summarized in Table 6.3. These results show decreasing error and increasing
distribution similarity as the network sequence length grows large, which provides com-
pelling support for the asymptotic predictions in Equation (5.50). These results are similar to
the previous error results in Sections 6.2 and 6.3 where overall error decreases as the sample
size (network sequence length in this case) grows large, but the error statistics increase with
𝑧 for fixed network length. This results from the network ensemble entropy increasing with
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𝑧. Recall from Chapter 5.4 that the inter-event times are directly related to the probability of
connectivity in each frame. Thus, as the frame connectivity error increases with the rising
network ensemble entropy, so will the inter-event time error since it depends on the frame
connectivity events. Conversely, the JSD decreases with increasing 𝑧 because the sample
size of inter-event times increases. The JSD measures overall distribution similarity, so it is
not as susceptible to a skewed result as the mAD and RMSE.

Table 6.3. Simulation Error and Distribution Similarity for the Time Window
between Unidirectional Connectivity.

Network Parameters Error
Frames (𝑘) Overloading (𝑧) Mean AD RMSE JSD

2 6.81 × 10−4 1.89 × 10−3 9.33 × 10−4

1,000 3 7.92 × 10−4 2.37 × 10−3 6.45 × 10−4

4 1.07 × 10−3 2.97 × 10−3 4.98 × 10−4

2 2.67 × 10−4 8.04 × 10−4 2.19 × 10−4

5,000 3 3.79 × 10−4 1.15 × 10−3 1.47 × 10−4

4 4.99 × 10−4 1.41 × 10−3 1.11 × 10−4

2 1.92 × 10−4 5.76 × 10−4 1.11 × 10−4

10,000 3 2.73 × 10−4 8.09 × 10−4 7.48 × 10−5

4 3.01 × 10−4 9.22 × 10−4 5.52 × 10−5

2 1.35 × 10−4 4.17 × 10−4 5.51 × 10−5

20,000 3 1.64 × 10−4 5.11 × 10−4 3.86 × 10−5

4 2.27 × 10−4 6.59 × 10−4 2.84 × 10−5

Plots of the geometric distribution for network sequences of length 𝑁 = 1, 000 frames and
𝑁 = 20, 000 frames are shown in Figures 6.6 and 6.7, respectively. Notice the closer align-
ment of the simulation and analytical PMFs when the network sequence is 20,000 frames
(Figure 6.7) versus 1,000 frames (Figure 6.6). This clearly demonstrates the convergence to
the predicted geometric distribution as the network sequence length goes to infinity.
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Figure 6.6. Probability of the number of frames (𝑘) between directed connec-
tivity from ND 𝑖 to ND 𝑗 for a network with 1,000 NDs, 100 RBs, overloading
ratio 𝑧 = 2, and network sequence length 𝑁 = 1, 000 frames.

Figure 6.7. Probability of the number of frames (𝑘) between directed connec-
tivity from ND 𝑖 to ND 𝑗 for a network with 1,000 NDs, 100 RBs, overloading
ratio 𝑧 = 4, and network sequence length 𝑁 = 20, 000 frames.
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6.5 Time to Initial Bidirectional Connectivity
The probability of initial bidirectional connectivity in each frame given in Equation (5.61)
is tested across the same range of network sizes and overloading ratios as initial uni-
directional connectivity in Section 6.3. The simulation networks for initial bidirectional
connectivity are composed of 𝑚 ∈ {100, 1000, 10000} NDs, 𝑛 = 0.1𝑚 RBs, and over-
loading ratios 𝑧 ∈ {2, 3, 4}, where each network size is simulated with each overloading
ratio. Network sequences of 𝑁 ∈ {100, 60, 45} frames are generated for each set of net-
work parameters through uniform random sampling from the network ensemble where
(𝑧, 𝑁) ∈ {(2, 100), (3, 60), (4, 45)}, and the number of bidirectional links from ND 𝑖 to ND
𝑗 occurring for the first time in each frame (1 to 𝑁) are recorded. This process is repeated
1,000 times for each set of network parameters, and experimental PMFs are generated by
averaging across all trials for each frame and normalizing by 𝑚(𝑚 − 1) possible links.

The error and distribution similarity results for initial bidirectional connectivity are summa-
rized in Table 6.4. The error trends behave in a similar manner to those in the case of initial
unidirectional connectivity in Section 6.3. The error statistics decrease as the network size
increases, but increase for a fixed network size and increasing overloading. However, the
error is larger than the unidirectional case since the PMF incorporates the variability of both
the 𝑖- 𝑗 and 𝑗-𝑖 links, rather than just the 𝑖- 𝑗 links (as in the unidirectional case). Also similar
to initial unidirectional connectivity, the JSD decreases as overloading increases within each
network size because the probability of initial bidirectional connectivity between each ND
pair converges to zero in a smaller number of frames.

Overall, the simulation error and distribution similarity results provide firm support for the
accuracy of analytical PMF. Again, in practical terms, the analytical PMF errs by 1 to 3
links out of 9,900 in each frame for the network of 100 NDs, and no error is greater than 24
links. Likewise, the largest mean error for the 10,000 ND network is 1,521 links, and the
maximum error is 14,820 out of 99,990,000 potential links in each frame.

A comparison of the analytical and simulated PMFs for all overloading ratios in a 100 ND
network is depicted in Figures 6.8-6.10. This increased error, with respect to the case of
initial unidirectional connectivity, is visually apparent in the frames where the analytical
and simulation results are misaligned, such as frame 𝑘 = 8 in Figure 6.8.
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Table 6.4. Simulation Error and Distribution Similarity for Initial Bidirectional
Connectivity.

Network Parameters Error
NDs (𝑚) Overloading (𝑧) Mean AD Max. AD JSD

2 1.09 × 10−4 1.96 × 10−3 5.74 × 10−5

100 3 1.54 × 10−4 9.98 × 10−4 5.35 × 10−5

4 2.70 × 10−4 2.38 × 10−3 5.32 × 10−5

2 3.12 × 10−5 3.23 × 10−4 5.90 × 10−6

1,000 3 3.57 × 10−5 3.77 × 10−4 4.72 × 10−6

4 5.83 × 10−5 4.01 × 10−4 4.69 × 10−6

2 1.19 × 10−5 1.31 × 10−4 6.10 × 10−7

10,000 3 1.33 × 10−5 1.16 × 10−4 4.81 × 10−7

4 1.52 × 10−5 1.48 × 10−4 2.47 × 10−7

Figure 6.8. Comparison of analytical and simulation PMFs for initial bidirec-
tional connectivity with 100 NDs, 10 RBs, and overloading ratio 𝑧 = 2.
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Figure 6.9. Comparison of analytical and simulation PMFs for initial bidirec-
tional connectivity with 100 NDs, 10 RBs, and overloading ratio 𝑧 = 3.

Figure 6.10. Comparison of analytical and simulation PMFs for initial bidi-
rectional connectivity with 100 NDs, 10 RBs, and overloading ratio 𝑧 = 4.
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6.6 Min. Time to Complete Bidirectional Connectivity
The probability for the minimum time to complete bidirectional connectivity (i.e., the
minimum time to achieve a complete affine graph) is tested for each case with a defined
expression for P {𝐹𝑚𝑖𝑛} discussed in Chapter 5.6. NOMA network parameters (𝑚, 𝑛, and
𝑧) that satisfy each case conditions are selected to generate the corresponding temporal
network ensemble. Next, a network sequence of length 𝑁 is generated through random
uniform sampling from the ensemble where 𝑁 is set equal to 𝐹𝑚𝑖𝑛 ∈ {2, 3, 4, 5} based on
the corresponding case. The resulting affine graph from each network sequence is calculated
using the mathematical framework of Chapter 5.1, 5.5, and Equation (5.62).

A total of 1× 108 network sequences are generated for each case and the number of times a
complete affine graph occurs is recorded. The number of complete affine graph occurrences
is normalized by the number of trials, and the experimental results are compared to the
analytical results using the absolute percent error as |𝐸 −𝑃 |/𝐸 , where 𝐸 is the experimental
result, and 𝑃 is the analytical result. The cases, network parameters, and error results are
shown in Table 6.5.

All errors except one are less than 1%, which lends considerable support for the accuracy
of the analytical results. The largest error is 5.33% and corresponds to the lower bound
of Case 2, in which exactly half of the NDs can receive a RB allocation in each frame.
This is a maximum entropy ensemble with P {𝐹𝑚𝑖𝑛 = 3} = 1.57 × 10−5 (i.e., a sample of
1 × 108 network sequences is only expected to produce 1,575 successes), so a larger error
is expected. A separate simulation of 1 × 109 network sequences is generated for this case,
with a resulting absolute percent error of 1.33 × 10−3. This 40-fold error reduction for a
10-fold sample size increase also supports the accuracy of the analytical results.

Table 6.5. Simulation Error Results for Minimum Time to Complete Bidirec-
tional Connectivity.

Case 𝑁 NDs (𝑚) RBs (𝑛) 𝑧 Absolute Percent Error
1 2 9 2 4 4.90 × 10−4

2 3 10 2 4 1.50 × 10−4

2 3 10 2 2.5 5.33 × 10−2

3.1 5 6 2 1 3.15 × 10−3

3.2 4 9 2 2 1.12 × 10−3
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6.7 Summary
This Chapter discussed the simulations conducted to test the analytical derivations from
Chapter 5, and the corresponding results. The simulation environment, parameters, and
selected error measures were presented. Error analysis was offered for each simulation,
and an entropy-based explanation for the difference in PMF error results was proposed.
Additionally, a characterization of the error in terms of link presence was provided for
all probabilistic connectivity results. The simulation results strongly support the internal
validity of all theoretical developments, and provide a sound basis for continued research.
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CHAPTER 7:
Conclusions

This research effort set out to understand the effect of variable overloading on the robustness
of NOMA wireless networks. Like so many other research endeavors, the direction of this
research was guided by new, and sometimes unexpected, questions that arose along the way.
However, all the variations remained true to the original focus on the relationship between
overloading and robustness. The following sections review the contributions of this research,
limitations, and questions that remain for future work.

7.1 Contributions
The research journey began by considering NOMA wireless networks through the theo-
retical perspective of temporal network theory, and grappling with the representation of a
NOMA wireless network as a mixed dependency-connectivity graph. After distilling the
mixed dependency-connectivity graph down to degree vectors that preserve connectivity and
overloading information, the temporal network ensemble conceptualization of the NOMA
wireless network was mathematically formalized.

Equipped with the temporal network ensemble, the research moved forward to recast the
network evolution as a Bernoulli random process. In this stochastic context, the implications
for the probability of RB allocation and the probability of temporal component membership
were considered. The resulting stochastic temporal component framework was the first
result of the research that began to get at the core of the research question, providing
a measure of network robustness as function of overloading. This development led to a
subsequent investigation into the minimum number of frames required for all NDs to join
the temporal strongly connected component (i.e., form a complete affine graph), and the
likelihood of this event. The knowledge gained from each of these efforts were combined
to develop a conference paper accepted to the 55𝑡ℎ Hawaii International Conference on
System Sciences [17]. However, the development of the temporal component framework
led to new questions about the impact of queued transmissions on network connectivity,
and the number of frames required to reach different states of connectivity between NDs.
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These new questions shifted the research focus from temporal components to the probability
of temporal connectivity between NDs. First, the probability of connectivity between any
two distinct NDs in any frame was studied. This line of inquiry was not long underway
before it became evident that queue dynamics were of central importance to the evolution of
probabilistic temporal connectivity in each frame. Upon recognizing the queue lent itself to
modeling as a random walk, the well-established analytical methods of Markov processes
became available to employ. From this point, the research journey quickly navigated from
exploring the probability of unidirectional connectivity in each frame, to the probability of
initial unidirectional connectivity in each frame, to the probability of initial bidirectional
connectivity in each frame, and finally to the time window between unidirectional connec-
tivity events. The results achieved from each of these forays into the realm of unanswered
questions provided new insight into the robustness of NOMA networks to variable over-
loading, and the first two of these efforts became the basis for another conference paper
accepted to the 2022 IEEE International Conference on Communications [65].

As is said in the Marine Corps, “no plan survives first contact with the enemy,” and this
research was no different. The original research plan did not place such a strong emphasis
on probabilistic connectivity between distinct ND pairs, but the questions that emerged
during the research process led down that path. Ultimately, we submit that progress towards
answering the research question was made, and new contributions to knowledge were
achieved.

This research developed a novel NOMA temporal graph model that abstracts the physical
NOMA implementation and is generalizable to any power-domain or code-domain physi-
cal approach. The model directly corresponds to a snapshot representation of a temporal
network ensemble, thereby providing a temporal connectivity analysis tool for NOMA net-
work designers. The stochastic temporal component framework developed in Chapter 4,
the probabilities and PMFs derived in Chapter 5.2–5.5, and the expressions for complete
bidirectional connectivity found in 5.6 all provide generalized measures of NOMA network
robustness as a function of variable overloading. These results contribute to wireless net-
work theory, temporal network theory, and provide a starting point for more idiographic
analysis in the design of specific physical NOMA wireless network implementations.
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7.2 Limitations
As discussed throughout the presentation of our work, there are a number of limitations to
the results of this research.

First, though intentional, the highly generalizable nature of the NOMA graph model (dis-
cussed in Chapter 3.1.2) sacrifices fidelity when applied, without adaptation, to any specific
TDDNOMA implementation. Analysis of the specific NOMA network under consideration
must be completed to adapt the frame and subframe constructs for more accurate results.

Next, themodel is limited in scope by the assumptions outlined inChapter 3.2.1. Specifically,
the model only considers a single BS, uniform overloading across all RBs, and assumes
that all NDs have a requirement to transmit in each frame. The model does not consider
multi-BS scenarios, device-to-device scenarios, non-uniform overloading among RBs, or
ND traffic models for intermittent transmission.

Additionally, as discussed in Chapter 4.1.2, the random sampling process from the network
ensemble results in a random RB allocation model, which is different from the prevalent
channel-based dynamic scheduling of RBs. While we present the maximum fairness ar-
gument for mMTC and URLLC use-cases, this model still limits the applicability of the
results, and does not consider cases in which mMTC and URLLC may overlap with eMBB
use-cases that require channel-based scheduling.

Finally, the simulation results presented in Chapter 6 are graph-based simulations, and
not based on models of wireless networks that simulate the RF environment and network
protocol stack. Thus, the simulations provide support for the accuracy of the connectivity
behavior of the evolving network graph (i.e., internal validity), but do not assess the rela-
tionship between the proposed model and practical network implementations (i.e., external
validity).

Each of the research limitations discussed in Section 7.2 represent opportunities to improve
and extend the results in future work, as discussed in Section 7.3.
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7.3 Future Work
Throughout this research effort, questions were encountered for which analytical results
have not yet been achieved. The following sections briefly review some ideas of how this
research may be continued and extended to address the limitations discussed in Section 7.2.

7.3.1 PMF for Complete Bidirectional Connectivity
After delving into the question of how quickly bidirectional connectivity can be achieved
between all NDs in aNOMAwireless network, it became apparent that the probability of this
event is vanishingly small for all but Case 1 as the network size increases (notice the small
number of NDs used for simulation in Table 6.5). Thus, a potentially more useful result to
pursue is the expression for the PMFdescribing the frame, 𝑘 , inwhich complete bidirectional
connectivity is achieved. Some preliminary simulations results suggest that the generalized
extreme value distribution or lognormal distribution may reasonably approximate the actual
distribution. However, the derivation of an expression for the actual distribution in terms of
the NOMA network parameters remains an open question.

7.3.2 Probability of Bidirectional Connectivity in Each Frame
Though the probability of initial bidirectional connectivity in each frame was derived, the
probability of bidirectional connectivity in each frame was not. Similar to the analytical
methods employed in Chapter 5, the general approach to this question considers all possible
ways in which ND 𝑖 and ND 𝑗 can be bidirectionally connected in frame 𝑇 . This can occur
in one of three ways:

1. ND 𝑖 and ND 𝑗 both establish a directed link to the other in frame 𝑇
2. ND 𝑖 has accumulated more directed links to ND 𝑗 by frame 𝑇 than ND 𝑗 has
accumulated to ND 𝑗 , and ND 𝑗 establishes directed connectivity to ND 𝑖 in frame 𝑇

3. The inverse of #2 above.

Mathematically, these cases can be stated as

P
{
𝐴𝑇𝑖 𝑗 = 1

}
= P

{
𝐹𝑇𝑖 𝑗 = 1, 𝐹

𝑇
𝑗𝑖 = 1

}
∪ 2

(
P

{
𝑇∑︁
𝑡=1

𝐹 𝑡𝑖 𝑗 ≥
𝑇∑︁
𝑡=1

𝐹 𝑡𝑗𝑖, 𝐹
𝑇
𝑗𝑖 = 1

} )
.
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The probability that 𝐹 𝑡
𝑖 𝑗

= 1 is already given in equation (5.29), but the probability that∑𝑇
𝑡=1 𝐹

𝑡
𝑖 𝑗
≥ ∑𝑇

𝑡=1 𝐹
𝑡
𝑗𝑖
proved more difficult. This sub-problem is approached by considering

the probability that
∑𝑇
𝑡=1 𝐹

𝑡
𝑖 𝑗
= 𝑘 (where 𝑘 is any positive integer). This appears like a sum

of Bernoulli trials (for which the binomial distribution can be used to find the probability)
except that the probability that 𝐹 𝑡

𝑖 𝑗
= 1 changes in each frame. The problem of dynamic

probabilities in each trial was approached using the method in [104], but the analytical and
simulation results are not yetwell-aligned. Thus, the probability of bidirectional connectivity
in each frame is ripe for future consideration.

7.3.3 Probability of Time Window Between Bidirectional Connectivity
If the result for the probability of the time window between unidirectional connectivity
events serves as a guide, finding the time window between bidirectional connectivity events
hinges on answering the question posed in Section 7.3.2. The solution to the P

{
𝐴𝑇
𝑖 𝑗
= 1

}
will likely shed significant light on the question of inter-event time. Thus, both could be
considered together in future work.

7.3.4 New Models of Overloading, RB Allocation and ND Transmission
This research considered uniformoverloading, a randomRBallocationmodel, and a network
in which all NDs had a requirement to transmit in each frame. Changes to any of these
assumptions provides a wide area of new research.

Future work could reduce the abstraction from the physical NOMA implementation by con-
sidering RB allocation that is driven by a spatial distribution of NDs, and the corresponding
physical effects on overloading variability (e.g., achievable overloading that varies across
the available RF spectrum based on instantaneous channel conditions).

Additionally, a new parameter indicating the time-varying transmission requirements of the
NDs could be introduced. This parameter could be driven by additional simulations of user
traffic, or be defined according to a probability distribution.

7.3.5 High Fidelity Simulation and Physical Experimentation
As discussed in Chapter 3.1.2, this research intentionally developed the ideas with an eye
toward generalized applicability. However, this comes at the cost of fidelity when applied
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to any specific NOMA implementation. Future work could test the analytical results by
associating the general TDD frame structure with a specific wireless network standard (e.g.,
3GPP NR), and conducting high-fidelity simulations that account for the RB allocation
process defined in that standard.

Similarly, as physical NOMA experimentation capabilities improve [43], the theoretical
results in this work could be tested against experimental results from niche or standards-
based NOMA implementations. Both high-fidelity simulation and physical experimentation
will improve the research by revealing flaws in the model that can be rectified, or providing
external validity.

7.3.6 Design and Creativity
The ideas for future research discussed in Section 7.3 only represent a small sample of an
immense space. Whether one claims the title of engineer or scientist, I reassert that both are
fundamentally engaged in the creative act of design. AsHerbert Simon profoundly observed,
the bridge between participants in disparate intellectual pursuits may be the recognition
of the “common creative [design] activity in which they are both engaged” [5, p. 137].
In this light, the possibilities for future research within this space, and the potential for
interdisciplinary collaboration, are only limited by the creativity of the researcher.

7.4 Final Thoughts
Nonorthogonal multiple access is a dynamic area of research that is developing to support
future iterations of 5G and the next generation of 6G wireless networks. I hope the con-
tributions of this work prove useful to other wireless network researchers, and support the
integration of emerging wireless network capabilities into Marine Corps tactical networks.
I would be especially pleased to learn that the theory developed in this research finds use in
ways and disciplines that I never considered.
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APPENDIX: Marine Corps Relevance

The Marine Corps doctrine for command and control asserts that “no single activity in war
is more important than command and control,” and defines “the basic elements of our com-
mand and control system” as “people, information, and the command and control support
structure” [105, pp. 35, 47]. Fundamentally, this research contributes to the understanding
of information movement through an exploration of the underlying command and control
support structure. The results find specific applicability in the context of Force Design 2030
and the emerging fifth generation (5G) of mobile wireless networks.

The future battlefield environment envisioned in Force Design 2030 is characterized by
the proliferation of unmanned, autonomous, and intelligent systems across all warfighting
functions and echelons of command [106]. Just as the explosion of intelligent devices
designed to automate various aspects of civilian life has given rise to the commercial
Internet of Things (IoT) [107], the complex ecosystem of sensors and actuators that will
accomplish tasks ranging from intelligence collection to kinetic operations represents the
evolution towards the Internet of Battlefield Things (IoBT) [108], [109].

A.1 Operational Problem
Fifth generation (5G) mobile wireless networks provide the capability necessary to support
the commercial IoT through a heavy reliance on beamforming technology that requires
multiple input multiple output (MIMO) antenna arrays with large numbers of elements
(i.e., massive MIMO (mMIMO)). However, this approach is ill-suited for the size, weight,
and power (SWaP) constraints of future tactical wireless networks that may be partially or
entirely composed of mobile access points (MAPs) or mobile base stations (MBSs), such as
low-altitude unmanned aerial vehicles (UAVs) (see Chapter 1.3 for a technical example of
mMIMO array requirements). Providing the capability of 5G wireless networks to support
the IoBT requires the consideration of a different approach.

A.2 Technical Approach
Nonorthogonal multiple access (NOMA) wireless networks provide an alternative path to

115



achieve 5G capabilities that do not impose the SWaP constraints of mMIMO. In contrast to
previous generations ofmultiple access technology,NOMAallowsmultiple network users to
simultaneously use the same transmission resources (e.g., electromagnetic spectrum (EMS),
time slots, spatial beams) to send or receive information. As discussed in Chapter 1.3, this
technique is called overloading, and it allows NOMA wireless networks to increase the
total information capacity of the network, increase the number of devices able to access the
network, use the EMS more efficiently, and reduce the time required to access the network.

A.2.1 Example Scenario
Consider a future stand-in force (SIF), as defined in the Marine Corps Concept for Stand-
in Forces, operating in Southeast Asia that is tasked with maintaining a large network of
intelligence, surveillance, reconnaissance and targeting (ISR-T) sensors in order to “gain and
maintain custody of potential targets,” and contribute to the joint force “kill web” [110, p.
5]. Accomplishing this mission requires processing of sensor data and shared real-time
situational awareness (SA). However, in accordance with [110], the SIF must also maintain
a high level of mobility, minimize sustainability requirements, and maintain a low signature.
As a result, the SIF foregoes centralized computing resources (i.e., servers) in favor of
distributed computing among their tactical mobile devices.

After deciding on their sensing and computing architecture, the SIF focuses their planning
on the communications network that must support it. The data-rate requirements for the
large sensor network are generally low, but some produce high-resolution imagery and
video. Additionally, the selection of a distributed computing model introduces additional
communications overhead as computing tasks are segmented among the tactical mobile
devices (e.g., performing federated learning algorithms, such as image recognition, on inputs
from the sensor network where each tactical mobile device only stores a small portion of the
image database [31]). Finally, integrating into the joint force kill-web imposes strict latency
requirements to support fire control systems. Recognizing their need for a communications
network that supports a large sensor network, and high-throughput/low latency for real-
time SA/distributed computing, the SIF employs a 5G tactical communications network
supported by MBSs mounted on small UAVs.

In contrast to other non-fixed infrastructure mobile wireless networks (e.g., a cell-on-
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wheels [111]), the small UAV network reduces lift requirements, autonomously adaptsMBS
positions to ensure coverage as the SIFmaneuvers, and minimizes persistent emissions from
the same location that support adversary targeting. However, the small UAV size cannot
accommodate the typical 5G mMIMO antenna arrays at the lower frequency ranges that
ensure communications in non-line-of-sight situations. Instead, the SIF employs NOMA
technology and a smaller MIMO array to handle the device density of the sensor network,
and throughput/latency requirements of the distributed computing applications.

A.3 Research Relevance
The overloading ratio is a critical network parameter that must be considered before de-
ploying a network using NOMA technology. The amount of overloading achieved impacts
the throughput, latency, and connection density of the network. The throughput and latency
are important for the SIF distributed computing applications that must support real-time SA
and post-processing of sensor data. The connection density is important for the large sensor
network the SIF must maintain. Correspondingly, the impact of changes in the overloading
ratio must be understood to design a network that effectively supports all requirements.

The overloading ratio may change as the SIF executes their scheme of maneuver and the
MBSs change locations to maintain network coverage. The EMS conditions at each location
are different (e.g., different levels of interference, signal absorption by natural or artificial
terrain), and the spatial distribution of the connected devices is different. Both of these
factors affect the achievable overloading ratio. Rather than considering methods to maintain
a specific overloading ratio, this research assumes it will change over the course of amission,
and investigates the resulting impact to time-varying network connectivity. This research
provides a generalized model and analytical tools (in terms of the overloading ratio and
other network parameters) to help network designers answer questions such as:

1. How likely are two devices to communicate with each other at a specific time during
the evolution of the network?

2. How long does it take for device 1 to receive a message from device 2 for the first
time? What is the probability that it takes that long?

3. After device 1 receives a message from device 2, how much time passes before
device 1 receives another message from device 2? What is the probability that the

117



time window is that size?
4. How long does it take for two devices to both receive a message from the other for the
first time (i.e. two-way hand shake)? What is the probability that it takes that long?

5. How long will it take for each device in the network to communicate with all others?
What is the probability that it takes that long?

The answers to questions like these assist network designers in determining whether or not
the network is likely to support all requirements, and determine how much risk they are
willing to (or must) accept given a set of network resource constraints.
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Supplemental

MATLAB® Code and Simulation Data.

This supplemental material includes all MATLAB® scripts employed to run the NOMA
network model simulations described in Chapter 6, and the resulting data (saved as MAT-
LAB® workspaces) on which the error and distribution similarity analysis was performed.

The supplemental material is available through the Dudley Knox Library at the Naval
Postgraduate School.

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd. Bldg. 339
Monterey, CA 93943

Phone: (831) 656-2947
Email: circdesk@nps.edu
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