1,139 research outputs found

    Pricing European and American Options under Heston Model using Discontinuous Galerkin Finite Elements

    Full text link
    This paper deals with pricing of European and American options, when the underlying asset price follows Heston model, via the interior penalty discontinuous Galerkin finite element method (dGFEM). The advantages of dGFEM space discretization with Rannacher smoothing as time integrator with nonsmooth initial and boundary conditions are illustrated for European vanilla options, digital call and American put options. The convection dominated Heston model for vanishing volatility is efficiently solved utilizing the adaptive dGFEM. For fast solution of the linear complementary problem of the American options, a projected successive over relaxation (PSOR) method is developed with the norm preconditioned dGFEM. We show the efficiency and accuracy of dGFEM for option pricing by conducting comparison analysis with other methods and numerical experiments

    Adjoint-Based Error Estimation and Mesh Adaptation for Hybridized Discontinuous Galerkin Methods

    Full text link
    We present a robust and efficient target-based mesh adaptation methodology, building on hybridized discontinuous Galerkin schemes for (nonlinear) convection-diffusion problems, including the compressible Euler and Navier-Stokes equations. Hybridization of finite element discretizations has the main advantage, that the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much smaller system. This not only reduces storage requirements, but also allows for a faster solution with iterative solvers. The mesh adaptation is driven by an error estimate obtained via a discrete adjoint approach. Furthermore, the computed target functional can be corrected with this error estimate to obtain an even more accurate value. The aim of this paper is twofold: Firstly, to show the superiority of adjoint-based mesh adaptation over uniform and residual-based mesh refinement, and secondly to investigate the efficiency of the global error estimate

    Local Improvements to Reduced-Order Approximations of Optimal Control Problems Governed by Diffusion-Convection-Reaction Equation

    Full text link
    We consider the optimal control problem governed by diffusion convection reaction equation without control constraints. The proper orthogonal decomposition(POD) method is used to reduce the dimension of the problem. The POD method may be lack of accuracy if the POD basis depending on a set of parameters is used to approximate the problem depending on a different set of parameters. We are interested in the perturbation of diffusion term. To increase the accuracy and robustness of the basis, we compute three bases additional to the baseline POD. The first two of them use the sensitivity information to extrapolate and expand the POD basis. The other one is based on the subspace angle interpolation method. We compare these different bases in terms of accuracy and complexity and investigate the advantages and main drawbacks of them.Comment: 19 pages, 5 figures, 2 table
    • …
    corecore