2,095 research outputs found

    A Frame Work for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C0C^0 IP methods

    Full text link
    In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers reliable and efficient a posteriori error estimators. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posed ness of the problem. Subsequently, applications of C0C^0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. Finally, we also discuss the variational discontinuous discretization method (without discretizing the control) and its corresponding error estimates.Comment: 23 pages, 5 figures, 1 tabl

    POD model order reduction with space-adapted snapshots for incompressible flows

    Full text link
    We consider model order reduction based on proper orthogonal decomposition (POD) for unsteady incompressible Navier-Stokes problems, assuming that the snapshots are given by spatially adapted finite element solutions. We propose two approaches of deriving stable POD-Galerkin reduced-order models for this context. In the first approach, the pressure term and the continuity equation are eliminated by imposing a weak incompressibility constraint with respect to a pressure reference space. In the second approach, we derive an inf-sup stable velocity-pressure reduced-order model by enriching the velocity reduced space with supremizers computed on a velocity reference space. For problems with inhomogeneous Dirichlet conditions, we show how suitable lifting functions can be obtained from standard adaptive finite element computations. We provide a numerical comparison of the considered methods for a regularized lid-driven cavity problem

    Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow

    Get PDF
    We derive estimates for the error in a variational approximation of the lift and drag coefficients of a body immersed into a viscous flow governed by the Navier-Stokes equations. The variational approximation is based on computing a certain weighted average of a finite element approximation to the solution of the Navier-Stokes equations. Our main result is an a posteriori estimate that puts a bound on the error in the lift and drag coefficients in terms of the local mesh size, a local residual quantity, and a local weight describing the local stability properties of an associated dual problem. The weight may be approximated by solving the dual problem numerically. The error bound is thus computable and can be used for quantitative error estimation; we apply it to design an adaptive finite element algorithm specifically for the approximation of the lift and drag coefficients

    A posteriori error estimation for a PDE-constrained optimization problem involving the generalized Oseen equations

    Get PDF
    We derive globally reliable a posteriori error estimators for a linear-quadratic optimal control problem involving the generalized Oseen equations as state equations; control constraints are also considered. The corresponding local error indicators are locally efficient. The assumptions under which we perform the analysis are such that they can be satisfied for a wide variety of stabilized finite element methods as well as for standard finite element methods. When stabilized methods are considered, no a priori relation between the stabilization terms for the state and adjoint equations is required. If a lower bound for the inf-sup constant is available, a posteriori error estimators that are fully computable and provide guaranteed upper bounds on the norm of the error can be obtained. We illustrate the theory with numerical examples
    corecore