1,576 research outputs found

    A Duality Approach to Error Estimation for Variational Inequalities

    Full text link
    Motivated by problems in contact mechanics, we propose a duality approach for computing approximations and associated a posteriori error bounds to solutions of variational inequalities of the first kind. The proposed approach improves upon existing methods introduced in the context of the reduced basis method in two ways. First, it provides sharp a posteriori error bounds which mimic the rate of convergence of the RB approximation. Second, it enables a full offline-online computational decomposition in which the online cost is completely independent of the dimension of the original (high-dimensional) problem. Numerical results comparing the performance of the proposed and existing approaches illustrate the superiority of the duality approach in cases where the dimension of the full problem is high.Comment: 21 pages, 8 figure

    Reduced basis methods for pricing options with the Black-Scholes and Heston model

    Full text link
    In this paper, we present a reduced basis method for pricing European and American options based on the Black-Scholes and Heston model. To tackle each model numerically, we formulate the problem in terms of a time dependent variational equality or inequality. We apply a suitable reduced basis approach for both types of options. The characteristic ingredients used in the method are a combined POD-Greedy and Angle-Greedy procedure for the construction of the primal and dual reduced spaces. Analytically, we prove the reproduction property of the reduced scheme and derive a posteriori error estimators. Numerical examples are provided, illustrating the approximation quality and convergence of our approach for the different option pricing models. Also, we investigate the reliability and effectivity of the error estimators.Comment: 25 pages, 27 figure

    Maximum-a-posteriori estimation with Bayesian confidence regions

    Full text link
    Solutions to inverse problems that are ill-conditioned or ill-posed may have significant intrinsic uncertainty. Unfortunately, analysing and quantifying this uncertainty is very challenging, particularly in high-dimensional problems. As a result, while most modern mathematical imaging methods produce impressive point estimation results, they are generally unable to quantify the uncertainty in the solutions delivered. This paper presents a new general methodology for approximating Bayesian high-posterior-density credibility regions in inverse problems that are convex and potentially very high-dimensional. The approximations are derived by using recent concentration of measure results related to information theory for log-concave random vectors. A remarkable property of the approximations is that they can be computed very efficiently, even in large-scale problems, by using standard convex optimisation techniques. In particular, they are available as a by-product in problems solved by maximum-a-posteriori estimation. The approximations also have favourable theoretical properties, namely they outer-bound the true high-posterior-density credibility regions, and they are stable with respect to model dimension. The proposed methodology is illustrated on two high-dimensional imaging inverse problems related to tomographic reconstruction and sparse deconvolution, where the approximations are used to perform Bayesian hypothesis tests and explore the uncertainty about the solutions, and where proximal Markov chain Monte Carlo algorithms are used as benchmark to compute exact credible regions and measure the approximation error

    On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems

    Full text link
    In this paper we propose a distributed dual gradient algorithm for minimizing linearly constrained separable convex problems and analyze its rate of convergence. In particular, we prove that under the assumption of strong convexity and Lipshitz continuity of the gradient of the primal objective function we have a global error bound type property for the dual problem. Using this error bound property we devise a fully distributed dual gradient scheme, i.e. a gradient scheme based on a weighted step size, for which we derive global linear rate of convergence for both dual and primal suboptimality and for primal feasibility violation. Many real applications, e.g. distributed model predictive control, network utility maximization or optimal power flow, can be posed as linearly constrained separable convex problems for which dual gradient type methods from literature have sublinear convergence rate. In the present paper we prove for the first time that in fact we can achieve linear convergence rate for such algorithms when they are used for solving these applications. Numerical simulations are also provided to confirm our theory.Comment: 14 pages, 4 figures, submitted to Automatica Journal, February 2014. arXiv admin note: substantial text overlap with arXiv:1401.4398. We revised the paper, adding more simulations and checking for typo
    • …
    corecore