2,483 research outputs found

    The role of electrocardiography in occupational medicine, from einthoven’s invention to the digital era of wearable devices

    Get PDF
    Clinical-instrumental investigations, such as electrocardiography (ECG), represent a corollary of a procedures that, nowadays, is called upon as part of the principles of precision medicine. However when carrying out the professional routine examinations, most tend to ignore how a “simple” instrument can offer indispensable support in clinical practice, even in occupational medicine. The advent of the digital age, made of silicon and printed circuit boards, has allowed the miniaturization of the electronic components of these electro-medical devices. Finally, the adoption of patient wearables in medicine has been rapidly expanding worldwide for a number of years. This has been driven mainly by consumers’ demand to monitor their own health. With the ongoing research and development of new features capable of assessing and transmitting real-time biometric data, the impact of wearables on cardiovascular management has become inevitable. Despite the potential offered by this technology, as evident from the scientific literature, the application of these devices in the field of health and safety in the workplace is still limited. This may also be due to the lack of targeted scientific research. While offering great potential, it is very important to consider and evaluate ethical aspects related to the use of these smart devices, such as the management of the collected data relating to the physiological parameters and the location of the worker. This technology is to be considered as being aimed at monitoring the subject’s physiological parameters, and not at the diagnosis of any pathological condition, which should always be on charge of the medical specialist We conducted a review of the evolution of the role that electrophysiology plays as part of occupational health and safety management and on its possible future use, thanks to ongoing technological innovation

    Bacterial contamination of inanimate surfaces and equipment in the intensive care unit

    Get PDF
    Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare workers' hands or by direct patient shedding of bacteria which are able to survive up to several months on dry surfaces. A higher environmental contamination has been reported around infected patients than around patients who are only colonized and, in this last group, a correlation has been observed between frequency of environmental contamination and culture-positive body sites. Healthcare workers not only contaminate their hands after direct patient contact but also after touching inanimate surfaces and equipment in the patient zone (the patient and his/her immediate surroundings). Inadequate hand hygiene before and after entering a patient zone may result in cross-transmission of pathogens and patient colonization or infection. A number of equipment items and commonly used objects in ICU carry bacteria which, in most cases, show the same antibiotic susceptibility profiles of those isolated from patients. The aim of this review is to provide an updated evidence about contamination of inanimate surfaces and equipment in ICU in light of the concept of patient zone and the possible implications for bacterial pathogen cross-transmission to critically ill patients

    Debatable issues in automated ECG reporting

    Get PDF
    Although automated ECG analysis has been available for many years, there are some aspects which require to be re-assessed with respect to their value while newer techniques which are worthy of review are beginning to find their way into routine use. At the annual International Society of Computerized Electrocardiology conference held in April 2017, four areas in particular were debated. These were a) automated 12 lead resting ECG analysis; b) real time out of hospital ECG monitoring; c) ECG imaging; and d) single channel ECG rhythm interpretation. One speaker presented the positive aspects of each technique and another outlined the more negative aspects. Debate ensued. There were many positives set out for each technique but equally, more negative features were not in short supply, particularly for out of hospital ECG monitoring

    A Wireless ECG Monitoring System for Healthcare

    Get PDF
    With aging of population, there has been a significant increase in the number of patients suffering from cardiovascular diseases. This results in an increased cost of healthcare associated with hospitalization, treatment and monitoring. In this paper, an architectural framework of a system that utilizes mobile technologies to enable continuous, wireless, electrocardiogram (ECG) monitoring of patients anytime anywhere is presented. The intelligent agents residing in the system detect any anomalous ECG readings and trigger an alarm that would be sent to the healthcare center in case of an emergency. The proposed system would not only provide a better quality of life to the patients by giving them the independence to move around freely in addition to continuous monitoring of heart but will also save healthcare costs associated with prolonged hospitalization of cardiac patients

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge
    • …
    corecore