6,423 research outputs found

    Reconstruction of hidden 3D shapes using diffuse reflections

    Get PDF
    We analyze multi-bounce propagation of light in an unknown hidden volume and demonstrate that the reflected light contains sufficient information to recover the 3D structure of the hidden scene. We formulate the forward and inverse theory of secondary and tertiary scattering reflection using ideas from energy front propagation and tomography. We show that using careful choice of approximations, such as Fresnel approximation, greatly simplifies this problem and the inversion can be achieved via a backpropagation process. We provide a theoretical analysis of the invertibility, uniqueness and choices of space-time-angle dimensions using synthetic examples. We show that a 2D streak camera can be used to discover and reconstruct hidden geometry. Using a 1D high speed time of flight camera, we show that our method can be used recover 3D shapes of objects "around the corner"

    Feasibility of remote sensing for detecting thermal pollution. Part 1: Feasibility study. Part 2: Implementation plan

    Get PDF
    A feasibility study for the development of a three-dimensional generalized, predictive, analytical model involving remote sensing, in-situ measurements, and an active system to remotely measure turbidity is presented. An implementation plan for the development of the three-dimensional model and for the application of remote sensing of temperature and turbidity measurements is outlined

    Performance Investigation and Repeatability Assessment of a Mobile Robotic System for 3D Mapping

    Get PDF
    In this paper, we present a quantitative performance investigation and repeatability assessment of a mobile robotic system for 3D mapping. With the aim of a more efficient and automatic data acquisition process with respect to well-established manual topographic operations, a 3D laser scanner coupled with an inertial measurement unit is installed on a mobile platform and used to perform a high-resolution mapping of the surrounding environment. Point clouds obtained with the use of a mobile robot are compared with those acquired with the device carried manually as well as with a terrestrial laser scanner survey that serves as a ground truth. Experimental results show that both mapping modes provide similar accuracy and repeatability, whereas the robotic system compares favorably with respect to the handheld modality in terms of noise level and point distribution. The outcomes demonstrate the feasibility of the mobile robotic platform as a promising technology for automatic and accurate 3D mapping

    3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit

    Full text link
    We present 3DTouch, a novel 3D wearable input device worn on the fingertip for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D input device that is self-contained, mobile, and universally working across various 3D platforms. This paper presents a low-cost solution to designing and implementing such a device. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. On the other hand, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices. We propose a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure
    • …
    corecore