317 research outputs found

    Faster Algorithms for the Maximum Common Subtree Isomorphism Problem

    Get PDF
    The maximum common subtree isomorphism problem asks for the largest possible isomorphism between subtrees of two given input trees. This problem is a natural restriction of the maximum common subgraph problem, which is NP{\sf NP}-hard in general graphs. Confining to trees renders polynomial time algorithms possible and is of fundamental importance for approaches on more general graph classes. Various variants of this problem in trees have been intensively studied. We consider the general case, where trees are neither rooted nor ordered and the isomorphism is maximum w.r.t. a weight function on the mapped vertices and edges. For trees of order nn and maximum degree Δ\Delta our algorithm achieves a running time of O(n2Δ)\mathcal{O}(n^2\Delta) by exploiting the structure of the matching instances arising as subproblems. Thus our algorithm outperforms the best previously known approaches. No faster algorithm is possible for trees of bounded degree and for trees of unbounded degree we show that a further reduction of the running time would directly improve the best known approach to the assignment problem. Combining a polynomial-delay algorithm for the enumeration of all maximum common subtree isomorphisms with central ideas of our new algorithm leads to an improvement of its running time from O(n6+Tn2)\mathcal{O}(n^6+Tn^2) to O(n3+TnΔ)\mathcal{O}(n^3+Tn\Delta), where nn is the order of the larger tree, TT is the number of different solutions, and Δ\Delta is the minimum of the maximum degrees of the input trees. Our theoretical results are supplemented by an experimental evaluation on synthetic and real-world instances

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n1−1/(d−1))2^{O(n^{1-1/(d-1)})} time for any fixed d≄3d\geq 3, while the same problems need 2O(n1−1/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(log⁥n)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(log⁥n)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Complexity of metric dimension on planar graphs

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The metric dimension of a graph G is the size of a smallest subset L ¿ V (G) such that for any x, y ¿ V (G) with x =/ y there is a z ¿ L such that the graph distance between x and z differs from the graph distance between y and z. Even though this notion has been part of the literature for almost 40 years, prior to our work the computational complexity of determining the metric dimension of a graph was still very unclear. In this paper, we show tight complexity boundaries for the Metric Dimension problem. We achieve this by giving two complementary results. First, we show that the Metric Dimension problem on planar graphs of maximum degree 6 is NP-complete. Then, we give a polynomial-time algorithm for determining the metric dimension of outerplanar graphs.Peer ReviewedPostprint (author's final draft

    Vertex-Coloring with Star-Defects

    Full text link
    Defective coloring is a variant of traditional vertex-coloring, according to which adjacent vertices are allowed to have the same color, as long as the monochromatic components induced by the corresponding edges have a certain structure. Due to its important applications, as for example in the bipartisation of graphs, this type of coloring has been extensively studied, mainly with respect to the size, degree, and acyclicity of the monochromatic components. In this paper we focus on defective colorings in which the monochromatic components are acyclic and have small diameter, namely, they form stars. For outerplanar graphs, we give a linear-time algorithm to decide if such a defective coloring exists with two colors and, in the positive case, to construct one. Also, we prove that an outerpath (i.e., an outerplanar graph whose weak-dual is a path) always admits such a two-coloring. Finally, we present NP-completeness results for non-planar and planar graphs of bounded degree for the cases of two and three colors

    Designing Networks with Good Equilibria under Uncertainty

    Get PDF
    We consider the problem of designing network cost-sharing protocols with good equilibria under uncertainty. The underlying game is a multicast game in a rooted undirected graph with nonnegative edge costs. A set of k terminal vertices or players need to establish connectivity with the root. The social optimum is the Minimum Steiner Tree. We are interested in situations where the designer has incomplete information about the input. We propose two different models, the adversarial and the stochastic. In both models, the designer has prior knowledge of the underlying metric but the requested subset of the players is not known and is activated either in an adversarial manner (adversarial model) or is drawn from a known probability distribution (stochastic model). In the adversarial model, the designer's goal is to choose a single, universal protocol that has low Price of Anarchy (PoA) for all possible requested subsets of players. The main question we address is: to what extent can prior knowledge of the underlying metric help in the design? We first demonstrate that there exist graphs (outerplanar) where knowledge of the underlying metric can dramatically improve the performance of good network design. Then, in our main technical result, we show that there exist graph metrics, for which knowing the underlying metric does not help and any universal protocol has PoA of Ω(log⁥k)\Omega(\log k), which is tight. We attack this problem by developing new techniques that employ powerful tools from extremal combinatorics, and more specifically Ramsey Theory in high dimensional hypercubes. Then we switch to the stochastic model, where each player is independently activated. We show that there exists a randomized ordered protocol that achieves constant PoA. By using standard derandomization techniques, we produce a deterministic ordered protocol with constant PoA.Comment: This version has additional results about stochastic inpu

    A Variant of the Maximum Weight Independent Set Problem

    Full text link
    We study a natural extension of the Maximum Weight Independent Set Problem (MWIS), one of the most studied optimization problems in Graph algorithms. We are given a graph G=(V,E)G=(V,E), a weight function w:V→R+w: V \rightarrow \mathbb{R^+}, a budget function b:V→Z+b: V \rightarrow \mathbb{Z^+}, and a positive integer BB. The weight (resp. budget) of a subset of vertices is the sum of weights (resp. budgets) of the vertices in the subset. A kk-budgeted independent set in GG is a subset of vertices, such that no pair of vertices in that subset are adjacent, and the budget of the subset is at most kk. The goal is to find a BB-budgeted independent set in GG such that its weight is maximum among all the BB-budgeted independent sets in GG. We refer to this problem as MWBIS. Being a generalization of MWIS, MWBIS also has several applications in Scheduling, Wireless networks and so on. Due to the hardness results implied from MWIS, we study the MWBIS problem in several special classes of graphs. We design exact algorithms for trees, forests, cycle graphs, and interval graphs. In unweighted case we design an approximation algorithm for d+1d+1-claw free graphs whose approximation ratio (dd) is competitive with the approximation ratio (d2\frac{d}{2}) of MWIS (unweighted). Furthermore, we extend Baker's technique \cite{Baker83} to get a PTAS for MWBIS in planar graphs.Comment: 18 page

    Centroidal localization game

    Get PDF
    One important problem in a network is to locate an (invisible) moving entity by using distance-detectors placed at strategical locations. For instance, the metric dimension of a graph GG is the minimum number kk of detectors placed in some vertices {v1,⋯ ,vk}\{v_1,\cdots,v_k\} such that the vector (d1,⋯ ,dk)(d_1,\cdots,d_k) of the distances d(vi,r)d(v_i,r) between the detectors and the entity's location rr allows to uniquely determine r∈V(G)r \in V(G). In a more realistic setting, instead of getting the exact distance information, given devices placed in {v1,⋯ ,vk}\{v_1,\cdots,v_k\}, we get only relative distances between the entity's location rr and the devices (for every 1≀i,j≀k1\leq i,j\leq k, it is provided whether d(vi,r)>d(v_i,r) >, <<, or == to d(vj,r)d(v_j,r)). The centroidal dimension of a graph GG is the minimum number of devices required to locate the entity in this setting. We consider the natural generalization of the latter problem, where vertices may be probed sequentially until the moving entity is located. At every turn, a set {v1,⋯ ,vk}\{v_1,\cdots,v_k\} of vertices is probed and then the relative distances between the vertices viv_i and the current location rr of the entity are given. If not located, the moving entity may move along one edge. Let ζ∗(G)\zeta^* (G) be the minimum kk such that the entity is eventually located, whatever it does, in the graph GG. We prove that ζ∗(T)≀2\zeta^* (T)\leq 2 for every tree TT and give an upper bound on ζ∗(G□H)\zeta^*(G\square H) in cartesian product of graphs GG and HH. Our main result is that ζ∗(G)≀3\zeta^* (G)\leq 3 for any outerplanar graph GG. We then prove that ζ∗(G)\zeta^* (G) is bounded by the pathwidth of GG plus 1 and that the optimization problem of determining ζ∗(G)\zeta^* (G) is NP-hard in general graphs. Finally, we show that approximating (up to any constant distance) the entity's location in the Euclidean plane requires at most two vertices per turn
    • 

    corecore