19 research outputs found

    Imaging skins: stretchable and conformable on-organ beta particle detectors for radioguided surgery

    Get PDF
    While radioguided surgery (RGS) traditionally relied on detecting gamma rays, direct detection of beta particles could facilitate the detection of tumour margins intraoperatively by reducing radiation noise emanating from distant organs, thereby improving the signal-to-noise ratio of the imaging technique. In addition, most existing beta detectors do not offer surface sensing or imaging capabilities. Therefore, we explore the concept of a stretchable scintillator to detect beta-particles emitting radiotracers that would be directly deployed on the targeted organ. Such detectors, which we refer to as imaging skins, would work as indirect radiation detectors made of light-emitting agents and biocompatible stretchable material. Our vision is to detect scintillation using standard endoscopes routinely employed in minimally invasive surgery. Moreover, surgical robotic systems would ideally be used to apply the imaging skins, allowing for precise control of each component, thereby improving positioning and task repeatability. While still in the exploratory stages, this innovative approach has the potential to improve the detection of tumour margins during RGS by enabling real-time imaging, ultimately improving surgical outcomes

    Identification of Mechanical Properties of Nonlinear Materials and Development of Tactile Displays for Robotic Assisted Surgery Applications

    Get PDF
    This PhD work presents novel methods of mechanical property identification for soft nonlinear materials and methods of recreating and modeling the deformation behavior of these nonlinear materials for tactile feedback systems. For the material property identification, inverse modeling method is employed for the identification of hyperelastic and hyper-viscoelastic (HV) materials by use of the spherical indentation test. Identification experiments are performed on soft foam materials and fresh harvested bovine liver tissue. It is shown that reliability and accuracy of the identified material parameters are directly related to size of the indenter and depth of the indentation. Results show that inverse FE modeling based on MultiStart optimization algorithm and the spherical indentation, is a reliable and scalable method of identification for biological tissues based on HV constitutive models. The inverse modeling method based on the spherical indentation is adopted for realtime applications using variation and Kalman filter methods. Both the methods are evaluated on hyperelastic foams and biological tissues on experiments which are analogous to the robot assisted surgery. Results of the experiments are compared and discussed for the proposed methods. It is shown that increasing the indentation rate eliminates time dependency in material behavior, thus increases the successful recognition rate. The deviation of an identified parameter at indentation rates of V=1, 2 and 4 mm/s was found as 28%, 21.3% and 7.3%. It is found that although the Kalman filter method yields less dispersion in identified parameters compared to the variance method, it requires almost 900 times more computation power compared to the variance method, which is a limiting factor for increasing the indentation rate. Three bounding methods are proposed and implemented for the Kalman filter estimation. It was found that the Projection and Penalty bounding methods yield relatively accurate results without failure. However, the Nearest Neighbor method found with a high chance of non-convergence. The second part of the thesis is focused on the development of tactile displays for modeling the mechanical behavior of the nonlinear materials for human tactile perception. An accurate finite element (FE) model of human finger pad is constructed and validated in experiments of finger pad contact with soft and relatively rigid materials. Hyperfoam material parameters of the identified elastomers from the previous section are used for validation of the finger pad model. A magneto-rheological fluid (MRF) based tactile display is proposed and its magnetic FE model is constructed and validated in Gauss meter measurements. FE models of the human finger pad and the proposed tactile display are used in a model based control algorithm for the proposed display. FE models of the identified elastomers are used for calculation of control curves for these elastomers. An experiment is set up for evaluation of the proposed display. Experiments are performed on biological tissue and soft nonlinear foams. Comparison between curves of desired and recreated reaction force from subject's finger pad contact with the display showed above 84% accuracy. As a complementary work, new modeling and controlling approaches are proposed and tested for tactile displays based on linear actuators. Hertzian model of contact between the human finger pad and actuator cap is derived and curves of material deformation are obtained and improved based on this model. A PID controller is designed for controlling the linear actuators. Optimization based controller tuning approach is explained in detail and robust stability of the system is also investigated. Results showed maximum tracking error of 16.6% for the actuator controlled by the PID controller. Human subject tests of recreated softness perception show 100% successful recognition rate for group of materials with high difference in their softness

    Glosarium Kedokteran

    Get PDF

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    VISUALIZATION OF ULTRASOUND INDUCED CAVITATION BUBBLES USING SYNCHROTRON ANALYZER BASED IMAGING

    Get PDF
    Ultrasound is recognized as the fastest growing medical modality for imaging and therapy. Being noninvasive, painless, portable, X-ray radiation-free and far less expensive than magnetic resonance imaging, ultrasound is widely used in medicine today. Despite these benefits, undesirable bioeffects of high-frequency sound waves have raised concerns; particularly, because ultrasound imaging has become an integral part of prenatal care today and is increasingly used for therapeutic applications. As such, ultrasound bioeffects must be carefully considered to ensure optimal benefits-to-risk ratio. In this context, few studies have been done to explore the physics (i.e. ‘cavitation’) behind the risk factors. One reason may be associated with the challenges in visualization of ultrasound-induced cavitation bubbles in situ. To address this issue, this research aims to develop a synchrotron-based assessment technique to enable visualization and characterization of ultrasound-induced microbubbles in a physiologically relevant medium under standard ultrasound operating conditions. The first objective is to identify a suitable synchrotron X-ray imaging technique for visualization of ultrasound-induced microbubbles in water. Two synchrotron X-ray phase-sensitive imaging techniques, in-line phase contrast imaging (PCI) and analyzer-based imaging (ABI), were evaluated. Results revealed the superiority of the ABI method compared to PCI for visualization of ultrasound-induced microbubbles. The second main objective is to employ the ABI method to assess the effects of ultrasound acoustic frequency and power on visualization and mapping of ultrasound-induced microbubble patterns in water. The time-averaged probability of ultrasound-induced microbubble occurrence along the ultrasound beam propagation in water was determined using the ABI method. Results showed the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as used for therapeutic systems. It was demonstrated that the X-ray ABI method has great potential for mapping ultrasound-induced microbubble patterns in a fluidic environment under different ultrasound operating conditions of clinical therapeutic devices. Taken together, this research represents an advance in detection techniques for visualization and mapping of ultrasound-induced microbubble patterns using the synchrotron X-ray ABI method without usage of contrast agents. Findings from this research will pave the road toward the development of a synchrotron-based detection technique for characterization of ultrasound-induced cavitation microbubbles in soft tissues in the future

    Endoscopy

    Get PDF
    Endoscopy is a fast moving field, and new techniques are continuously emerging. In recent decades, endoscopy has evolved and branched out from a diagnostic modality to enhanced video and computer assisting imaging with impressive interventional capabilities. The modern endoscopy has seen advances not only in types of endoscopes available, but also in types of interventions amenable to the endoscopic approach. To date, there are a lot more developments that are being trialed. Modern endoscopic equipment provides physicians with the benefit of many technical advances. Endoscopy is an effective and safe procedure even in special populations including pediatric patients and renal transplant patients. It serves as the tool for diagnosis and therapeutic interventions of many organs including gastrointestinal tract, head and neck, urinary tract and others

    Hepatic Surgery

    Get PDF
    Longmire, called it a "hostile" organ because it welcomes malignant cells and sepsis so warmly, bleeds so copiously, and is often the ?rst organ to be injured in blunt abdominal trauma. To balance these negative factors, the liver has two great attributes: its ability to regenerate after massive loss of substance, and its ability, in many cases, to forgive insult. This book covers a wide spectrum of topics including, history of liver surgery, surgical anatomy of the liver, techniques of liver resection, benign and malignant liver tumors, portal hypertension, and liver trauma. Some important topics were covered in more than one chapter like liver trauma, portal hypertension and pediatric liver tumors
    corecore