2 research outputs found

    Combining Target-independent Analysis with Dynamic Profiling to Build the Performance Model of a DSP

    Get PDF
    Fast and accurate performance estimation is a key aspect of heterogeneous embedded systems design flow, since cycle-accurate simulators, when exist, are usually too slow to be used during design space exploration. Performance estimation techniques are usually based on combination of estimation of the single processing elements which compose the system. Architectural characteristics of Digital Signal Processors (DSP), such as the presence of Single Instruction Multiple Data operations or of special hardware units to control loop executions, introduce peculiar aspects in the performance estimation problem. In this paper we present a methodology to estimate the performance of a function on a given dataset on a DSP. Estimation is performed combining the host profiling data with the function GNU GCC GIMPLE representation. Starting from the results of this analysis, we build a performance model of a DSP by exploiting the Linear Regression Technique. Use of GIMPLE representation allows to take directly into account the target-independent optimizations performed by the DSP compiler. We validate our approach by building a performance model of the MagicV DSP and by testing the model on a set of significative benchmarks

    Statistical framework for video decoding complexity modeling and prediction

    Get PDF
    Video decoding complexity modeling and prediction is an increasingly important issue for efficient resource utilization in a variety of applications, including task scheduling, receiver-driven complexity shaping, and adaptive dynamic voltage scaling. In this paper we present a novel view of this problem based on a statistical framework perspective. We explore the statistical structure (clustering) of the execution time required by each video decoder module (entropy decoding, motion compensation, etc.) in conjunction with complexity features that are easily extractable at encoding time (representing the properties of each module's input source data). For this purpose, we employ Gaussian mixture models (GMMs) and an expectation-maximization algorithm to estimate the joint execution-time - feature probability density function (PDF). A training set of typical video sequences is used for this purpose in an offline estimation process. The obtained GMM representation is used in conjunction with the complexity features of new video sequences to predict the execution time required for the decoding of these sequences. Several prediction approaches are discussed and compared. The potential mismatch between the training set and new video content is addressed by adaptive online joint-PDF re-estimation. An experimental comparison is performed to evaluate the different approaches and compare the proposed prediction scheme with related resource prediction schemes from the literature. The usefulness of the proposed complexity-prediction approaches is demonstrated in an application of rate-distortion-complexity optimized decoding
    corecore