
Combining target-independent analysis with dynamic profiling to
build the performance model of a DSP

Marco Lattuada, Fabrizio Ferrandi
Politecnico di Milano - Dipartimento di Elettronica ed Informazione

Via Ponzio, 34/5 – 20133 – Milano (Italy)
{lattuada,ferrandi}@elet.polimi.it

Abstract
Fast and accurate performance estimation is a key aspect of
heterogeneous embedded systems design flow, since cycle-
accurate simulators, when exist, are usually too slow to be
used during design space exploration. Performance estima-
tion techniques are usually based on combination of estima-
tion of the single processing elements which compose the
system. Architectural characteristics of Digital Signal Pro-
cessors (DSP), such as the presence of Single Instruction
Multiple Data operations or of special hardware units to con-
trol loop executions, introduce peculiar aspects in the perfor-
mance estimation problem.

In this paper we present a methodology to estimate the
performance of a function on a given dataset on a DSP. Esti-
mation is performed combining the host profiling data with
the function GNU GCC GIMPLE representation. Starting
from the results of this analysis, we build a performance
model of a DSP by exploiting the Linear Regression Tech-
nique. Use of GIMPLE representation allows to take directly
into account the target-independent optimizations performed
by the DSP compiler. We validate our approach by building
a performance model of the MagicV DSP and by testing the
model on a set of significative benchmarks.

1. Introduction
In the last years there has been a considerable growing in
the performance request in the embedded systems. To sat-
isfy this growth, multiprocessor heterogeneous systems have
become the de-facto standard in the embedded systems in-
creasing the complexity of the design flow. Indeed, the use of
this type of architectures introduces new problems in the de-
sign flow such as component selection and applications par-
titioning and mapping [1]. Nevertheless, the time-to-market
of embedded systems has not been extended to allow to treat
accurately these new problems. On the contrary, a faster de-
sign flow is required by manufacturers to make products
available on the market as soon as possible. This accelera-
tion of the design process imposes to use very fast heuristics
to speed-up the design space exploration potentially impov-
erishing the quality of the design results. There are some

critical analyses which in any case can not be too approxi-
mated. One of them is the analysis of the application over-
all performance since meeting the performance constraints
is a mandatory objective for the design flow. Evaluation of
the performance during the different design steps of an ap-
plication by directly measuring it onto the target architec-
ture is not always possible: final target platform, some of its
components, or part of its compiler tool chain can be not
available during applications development. For example, fi-
nal platform can be not yet ready because still in design
while compiler tool chain use can be limited by license or
host compatibility problems. To address these problems, we
need to estimate the execution time of the overall applica-
tion instead of measuring it. Moreover, considering the cur-
rent requests of an embedded system design flow, we have
to provide a fast estimation technique but which provides
results enough accurate to correctly drive the design explo-
ration without cutting good solutions from the design space.

To perform the estimation of the overall application we
need to estimate its single task on the different processing
elements, since most of the methodologies [2, 3] for esti-
mating the overall performance of a system are based on
combination of single component performance estimation
techniques. The methodology presented in this paper focuses
on the performance estimation of Digital Signal Processors
(DSP). DSPs are microprocessors specialized for real time
computing of digital signals, so they are mainly focused
on data intensive applications and this purpose reflects on
their architecture [4]. For example, they implement Single
Instruction Multiple Data operations, special arithmetic op-
erations such as Multiply and Accumulate and special hard-
ware units to control loop executions.

Independently by the architectural characteristics of a
DSP, two are the possible scenarios of use of a DSP in an
embedded platform. In the first scenario, the DSP is con-
trolled by a General Purpose Processors which uses it as a
co-processor [5, 6]. In the second scenario, DSP is the mas-
ter component of the architecture and executes directly all
the application or at least it controls the computation flow
[7]. The estimation methodology presented in this paper is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55210723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


focused on the first scenario since is much more frequent in
the Multi Processor System on Chip architectures [8]. The
same methodology can be adopted also in the second sce-
nario, but it requires that the target platform (or its simulator)
allows to measure the performance of the single functions.

There are two possible strategies to predict the execution
time of a function on a DSP: use a simulator or build a
mathematical model. The first method can not always be
adopted because a cycle-accurate simulator of the target DSP
can not be available. Moreover, simulation time can be too
long making using of the simulator unsuitable during the
tuning of the platform and of the applications.

To speed up simulation, Stolberg et al. [2] propose a
methodology which integrates simulation and analysis. In
this methodology the application is decomposed in core
tasks whose execution time is supposed to be known. These
data are then combined with information extracted from
analysis of the application to produce the estimation of the
whole application. The main disadvantage of this technique
is that it requires the execution time of each core present in
the application.

An hybrid approach which combines simulation and anal-
ysis is also proposed by Gao et al. [3]. Simulation is used
to estimate execution time of library functions and the first
run of a particular control path (sequence of instructions ex-
ecuted from the starting of a function to its ending) on the
DSP. Execution times of the General Purpose Processors are
estimated using a linear model built by hand, while succes-
sive runs of paths on the DSP are estimated using the data
measured during the first runs. This technique assumes that
different executions of the same code on different data are
performance equivalent. This assumption holds only if the
considered DSP has not a data cache. Moreover, it requires to
measure directly the execution time of each executed paths,
so input data which activate each path have to be computed.

The second strategy consists of the creation of a mathe-
matical performance model of the target DSP. There are two
possible ways to build such type of models: by hand or by
using automatic techniques. The first way is applicable when
the target DSP architecture is well known. For example, So
et al. [9] propose a method for estimating the benefits in the
simultaneous execution of different threads on a DSP. The
mathematical model they propose is based on the schedul-
ing of the assembly operations of the threads under analysis
and requires a deep knowledge of the DSP architecture.

Use of GNU GCC [10] Intermediate Representation for
DSP performance analysis has been proposed in [11]. Pega-
toquet et al. extract the RTL representation from a modified
version of the GNU GCC, but they do not consider it suitable
for a DSP performance analysis: the used load-store model
does not always describe correctly the memory access model
of a DSP. For this reason the authors translate this represen-
tation in Directed Acyclic Graphs and estimate the applica-
tion performance starting from them. Since the RTL repre-

sentation is target dependent, new translation rules for each
considered target DSP have to be added by the designer.

The automatic techniques build performance models by
using statistical data modeling techniques. In [12], Cava-
zos et al. describe a methodology based on Neural Networks
to predict the effect on the application performance when a
combination of optimizations is applied. For each new func-
tion considered, it requires to run four different transformed
versions of the application on the real platform or on a cycle-
accurate simulator.

The methodology proposed in this paper belongs to the
last class of estimation techniques presented. It automat-
ically builds a performance model of a DSP by exploit-
ing linear regression technique. The linear models, although
among the simplest performance models, can model quite
accurately the performances of the miscellaneous architec-
tures of the DSP and, thanks to the intelligibility of their
parameters, allow the designer to easily compare the perfor-
mance models of different DSPs [13]. The model is built
using a set of numeric features extracted from the GIMPLE
representation [14] of the application combined with host
profiling information. GIMPLE is a language used as inter-
mediate representation by the GNU GCC. Use of the GIM-
PLE representation extracted at the end of the middle-end
flow allows to take into account the effects of the target-
independent optimizations performed by the DSP compil-
ers. Indeed, even if GNU GCC compiler targets mostly RISC
processors, most of the optimizations which it applies during
the target-independent optimization flow (e.g.: copy propa-
gation, common subexpression elimination, dead code elim-
ination) are also applied by most of the DSP compilers [12].
An analysis performed on a lower level target dependent rep-
resentation would provide more accurate results. However,
most of the times this type of analysis can not be applied
since DSP compilers are usually not open source nor allow
easy access to their internal intermediate representation.

The main contributions of this paper can be summarized
as follows:

• it proposes a methodology for fast and automatic building
of performance estimation models for DSPs without a
deep knowledge of architectural details;

• it proposes a methodology which can directly predict the
effect of some of the optimizations performed by the DSP
compiler.

The paper is organized as follows: Section 2 describes the
methodology, Section 3 shows the experimental results of
the application of the methodology while Section 4 draws
some conclusions and outlines some future works.

2. Methodology
The flow of the proposed methodology is composed by the
following phases:



1. Performance Model Building: during this phase the Per-
formance Model represented by a linear function f is
built; the phase is composed by three main steps:

(a) Function Analysis (Section 2.1): a set of functions is
analyzed to extract a set of numeric features which
characterize them from the performance point of
view;

(b) Preprocessing (Section 2.3): these numeric features
are preprocessed;

(c) Linear Regression Analysis (Section 2.2): the prepro-
cessed data are used as input of the the Linear Regres-
sion technique to build the model;

2. Performance Model Application: given a new function,
the built model is used to estimate its execution time; the
steps which compose this phase are:

(a) Function Analysis (Section 2.1);

(b) Preprocessing (Section 2.3);

(c) Estimation computation (Section 2.4): the data pro-
duced in previous steps are used as input of function
f to compute the estimation.

The following Sections describe in more details the
phases which have just been presented.

2.1 Function Analysis
One of the key aspects of the proposed methodology is how
to analyze a function to extract information representative
of its performance aspects. Indeed, the significance of this
information will reflect on the quality of the produced esti-
mation. Moreover, the definition of this analysis has to take
into account that the same procedure will be also used during
Performance Model Application, so it must have not partic-
ular requirements nor take too much time.

First of all, the analysis should consider the dynamic
aspects (e.g., the branch probabilities, the number of loop
iterations). Most of the times this type of information can
not be easily provided with good accuracy by a pure static
analysis, but it can be produced by running an instrumented
version of the function on the host machine.

The other important aspect which characterizes a function
analysis is the abstraction level at which it is performed.
Possible abstraction levels go from source code level to
assembly level. The last level is the most precise, but it is
not suitable for the aims of this methodology because of
its requirements. Assembly level analysis requires not only
the availability of a compiler for the target architecture, but
also of a simulator which satisfies these two conditions: it
should provide accurate profiling information to be used
in the analysis (e.g., operations or paths counters) and its
simulation speed should be comparable with the execution
of the application on the host processor.

On the opposite, the analysis performed at the source
code level does not require target compiler and simulator,

1 int function(int a, int b, int * c,

2 int * d)

3 {

4 int counter, mult, i;

5 for(i = 0; i < 10; i++) {

6 mult = a * b;

7 counter += c[i];

8 counter -= d[i];

9 }

1 return counter + mult;

11 }

Figure 1. Example of function to be analyzed

but produces numeric features which are less representative
of the performance of the considered function since it does
not take into account the optimizations performed by the
target compiler at all. The performance models built starting
from this type of information can be not enough accurate to
be used without the risk of driving design space exploration
towards bad solutions. This can lead to a poor quality design
or to the increasing of the design time.

We choose to perform analysis at an intermediate level:
the GIMPLE representation [14]. In particular we use the in-
termediate representation extracted at the end of the middle-
end flow, during which all the selected target-independent
optimizations have been applied. Extracting the intermedi-
ate representation at this point allows to produce numeric
features which can better predict the impact of the target in-
dependent optimizations performed by the DSP compiler on
the function.

Let us consider the example presented in Figure 1 and
suppose that the DSP compiler applies the loop-invariant
code move optimization (move outside the loop operations
whose result does not depend on the particular iteration)
during the compilation. In this case only a single multiply
will be executed during each execution of the function. In
Table 1 results of analysis performed at the source and at
the GIMPLE level are reported. The source level analysis
detects the execution of 10 multiplications. On the other
hand, the analysis performed at GIMPLE level correctly
detects the execution of a single multiplication.

In the GIMPLE flow the optimizations selected should
be all the ones that also the DSP compiler applies. If we
have no information about the optimization flow of the DSP
compiler, we can try different optimizations sets such as the
ones of the GNU GCC optimization levels.

The extracted numeric features consist mainly of dy-
namic counters of GIMPLE operations. Since these data
can depend on the dataset on which the function is executed,
the analysis has to be repeated for each given dataset. The
analysis proceeds as follows: each GIMPLE operation is as-
sociated with the corresponding C operation from which it
has been generated. Combining this mapping and the profil-
ing information obtained running the benchmark on the host,



Table 1. The numeric features extracted from the example
of Figure 1

Source code GIMPLE
Original Original Preprocessed

Feature value value value
for 10 10 0.188
read:int 20 20 0.377
minus-plus:int 21 21 0.396
mult:int 10 1 0.019
return 1 1 0.019

we associate to each operation its dynamic frequency. The
operations are then clustered according their operator (e.g.,
plus, mult) and their data type (e.g., integer or floating). Fur-
ther clustering can be performed on operations which can be
considered equivalent from the performance point of view.
In the example, plus and minus operations have been clus-
tered. Example of the numeric features extracted are shown
in Table 1.

The other numeric features concern the presence and the
type of loop constructs in the function code. In the GIMPLE
language there is not an explicit representation of the loop
conditional constructs since they are replaced by combina-
tions of labels, conditional and unconditional jumps. Starting
from these operations and from the Control Flow Graph of
the function, loops present in the source code are identified.
A special operation is associated with each identified loop
and it is counted dynamically as other operations exploiting
host profiling. These special operations can be of two types:
while, which identifies the iteration of a generic loop, and
for, which identifies the iteration of a for loop. This infor-
mation can be very significant in the estimation since many
DSP optimizations are based on the presence of loops and in
particular on the presence of for loops.

2.2 Linear Regression Analysis
Regression analysis identifies a set of mathematical tech-
niques to analyze numerical data for modeling the relation-
ships among a variable Y (dependent variable) and one or
more variables Xi (independent variables). In particular we
use the Linear Regression Technique which describes this re-
lationship using a linear function f of the independent vari-
ables Xi, of the corresponding parameters βi and of an error
term ε, treated as a random variable:

Y = f(X,β, ε) = β0+β1X1+β2X2+ ...+βkXk+ε (1)

This analysis can be used for several purposes: in the pro-
posed methodology we exploit it to predict the DSP func-
tions execution times. Note that we are assuming that the ex-
ecution time of a function can be approximated with a linear
combination of some numerical characteristics of the func-
tion itself.

To compute the parameters βi, a set of data, called train-
ing set, representative of the prediction problem, has to be

provided as input of the technique. In particular, for each el-
ement of the set, the values of the independent and of the
dependent variables have to be provided.

When Regression Analysis is exploited to perform esti-
mation, the dependent variable Y of Equation 1 corresponds
to the variable that we want to estimate. In our estimation
problem, the function execution time would seem to be a
good candidate to be the dependent variable Y . Given this
choice, the variables X have to be some numeric features
extracted from the function analysis and representative of its
overall performance. A possible choice of the variables X is
the counters of the different types of operations.

2.3 Preprocessing
The use of function execution time as dependent variable
Y as initially proposed in the previous Section has to be
avoided since it introduces a bias in the model because of
the very large range (several orders of magnitude) of this
variable. How a too wide range of the dependent variable
can affect the goodness of the model can be easily seen on
an example. Let us consider two observed data V1 = 50
and V2 = 2000 and their predicted values V1 = 100 and
V2 = 2, 100 and let us analyze which is the estimation
error introduced. The standard linear regression technique
minimizes the Mean Squared Error MSE:

MSE =
1

n

n∑
i=1

e2i =
1

n

n∑
i=1

(
Vi − Vi

)2
(2)

where Vi is the observed data and Vi is the predicted data.
The square error in first case is smaller than in the second
(2, 500 vs. 10, 000), so the technique will consider much
more significant the error introduced in the second estima-
tion. On the opposite, the goodness of a performance esti-
mation model is usually evaluated considering its Mean Rel-
ative Error [3, 11, 12]. According to this criterion, the es-
timation error produced in the first case is much more sig-
nificant (relative error is 2) than the one of the second case
(0.05). This consideration can be generalized: the regression
technique is biased to better predict the longest functions in
spite of shortest ones.

To reduce the range of the dependent variable and so to
reduce this bias problem, we have to preprocess the data.
Preprocessing of the data is quite common in Regression
Analysis. Which transformations (e.g., Standardization [15],
Logarithmic Transformation [16]) are applied depends on
the characteristics of the problem. In our case, for each func-
tion, all the data are divided by the overall sum of dynamic
counters of GIMPLE operations. This transformation not
only reduces the range of the depedent variable, but also pre-
serves the linear relationship between independent variables
and it. In this way we have a prediction problem with these
characteristics: the dependent variable Y is the average exe-
cution time per operation and the independent variables Xi

are the numeric features computed during Function Analysis



divided by their overall sum. In this process, the loop special
operations previously introduced are considered as normal
GIMPLE operations.

The result of the application of the Linear Regression
Technique to the preprocessed numeric features is the com-
putation of the values of the parameters βi. At the end of this
step, given the numeric features Xi and the overall sum of
GIMPLE operation S we obtain the performance model for
predicting the Average Execution Time per-operation AC:

AC = f(N) = B0 +B1N1 +B2N2 + ...+BkNK (3)

where Bi are constant coefficients and Ni =
Xi

S

2.4 Estimation computation
Last phase of the methodology flow is the estimation compu-
tation. The function, whose execution time we want to pre-
dict, is analyzed as it has been described in Section 2.1 and
the results are preprocessed as it is described in the previous
Section.

Since the aim of the methodology is the estimation of the
function execution time (Time), the dependent variable AC
has to be multiplied by the number of GIMPLE operations
S. So, we have:

Time =AC · S
=(B0 +B1N1 +B2N2 + ...+BkNK) · S (4)

Time =

(
B0 +B1

X1

S
+B2

X2

S
+ ...+BN

XN

S

)
· S

=(B0 · S) +
∑
i∈F

Bi ·Xi (5)

Rewriting Equation 4 into Equation 5 has two consequences:
the preprocessing is not more needed (Xi variables are used
instead of Ni) and the overall number of operations S is
treated as a numeric feature (with coefficient B0).

3. Experimental Evaluation
We validate the proposed methodology building the perfor-
mance model of the MagicV DSP processor. MagicV is a 1
GFLOP floating point DSP with 40-bit precision developed
by Atmel [17] integrated with an ARM926EJ-S on the Atmel
DIOPSIS 940HF chip [6]. The operating system installed on
the system is Linux 2.6.24. We initially describe our experi-
mental setup and then we present the experimental results.

3.1 Experimental Setup
The proposed methodology has been integrated in PandA
[18], a Hardware/Software codesign framework based on
the GNU GCC compiler developed at Politecnico di Milano.
It exploits three existing components of the framework: the
GIMPLE analyzer, the edge profiler and the automatic code
instrumenter.

GIMPLE representation is extracted from the GNU GCC
and it is analyzed to produce the numeric features as de-
scribed in Section 2.1. The framework is able to control

which optimizations the GNU GCC applies before produc-
ing the GIMPLE used by the methodology. The profiling in-
formation are obtained by running on the host machine the
function code instrumented using a modified version of the
Edge Path Profiling [19].

During the model building phase, the real execution times
of the functions are measured directly on the board. These
measures are performed automatically by generating instru-
mented code that exploits a free running hardware timer of
the chip. The modified source code is then compiled with
the Chess compiler from Target Compiler [20]. It should
be pointed out that the optimization performed by this DSP
compiler are not under the designer’s control. Each exe-
cutable is run ten times to mitigate the measures perturba-
tion introduced by other process executed by the operating
system. Then, the framework collects all the measures of the
execution time of a function and tries to identify the outliers
data (perturbed runs) by considering values that differ more
than the standard deviation from the mean. These outliers
are removed from the set and the real measure is computed
as the average of the remaining values.

To perform the linear regression, we use RapidMiner
(formerly YALE [21]), an open-source java based tool for
knowledge discovery and data mining.

3.2 Experimental Results
We validate the methodology using two benchmarks suites
for embedded systems: the DSP Stone [22] and the Power-
stone [23] suites. We analyze the benchmarks to identify all
the functions which can be executed on the DSP: we with-
draw some of them because of the restrictions imposed by
the DIOPSIS tool chain. The extracted functions are listed
in the left part of Table 2.

Since we have no information about which optimizations
the Chess compiler applies, we build different performance
models guessing the optimizations performed. The consid-
ered performance models differ for the target independent
optimizations applied to the GIMPLE representation. In par-
ticular we choose the optimizations sets corresponding to the
GNU GCC optimization level: O0 (do not optimize), O1 (op-
timize), O2 (optimize even more).

We verify the accuracy of the produced models through
the cross-validation technique on the benchmark set. Table 3
shows the average error and the standard deviation for each
model.

The most accurate model is based on the numeric features
extracted using the O1 set of optimizations (Mean Relative
error is 23.05%). This model is almost twice more accurate
than the model produced without any optimizations (Mean
Relative error of O0 model is 40.72%). On the other hand,
the model built using the O2 optimizations set is less ac-
curate. This can be motivated by the fact that the O2 opti-
mizations set models less accurately the set of optimizations
performed by Chess. From this consideration and from the
fact that O2 optimizations set is a superset of O1, we can



Table 2. The estimation error of the model O1

Real Exec. Estim.
Benchmark Function Time (µs) Error %)

DSP Stone Fixed Point
adpcm adapt quant 2.193 · 105 11.1
adpcm adpt predict 1 7.255 · 105 12.1
adpcm coding adjustment 2.371 · 105 12.6
adpcm encoder 3.368 · 106 9.4
complex multiply main 1.905 · 104 7.3
complex update main 1.899 · 104 38.3
convolution main 1.890 · 104 38.8
dot product main 1.736 · 104 16.2
fft 16 fft bit reduct 5.118 · 104 29.9
fft 16 fft inpsca 4.562 · 104 47.5
fft 1024 fft bit reduct 1.680 · 106 39.6
fft 1024 fft inpsca 1.277 · 106 39.0
fir main 2.193 · 104 3.0
fir2dim main 5.085 · 104 5.1
iir biquad N sections main 2.174 · 104 4.6
iir biquad one section main 1.958 · 104 29.6
lms main 2.157 · 104 24.2
mat1x3 main 1.634 · 104 44.2
matrix1 main 6.521 · 104 9.9
matrix2 main 6.411 · 104 3.3
n complex updates main 2.408 · 104 36.5
n real updates main 2.009 · 104 16.6
real update main 5.104 · 104 12.4

Average 2.229 · 105 21.4

DSP Stone Floating Point
complex multiply main 1.716 · 104 22.1
complex update main 1.908 · 104 45.6
convolution main 2.075 · 104 2.8
dot product main 1.752 · 104 27.3
fir main 2.371 · 104 27.2
fir2dim main 4.398 · 104 7.8
iir biquad N sections main 2.337 · 104 1.2
iir biquad one section main 1.848 · 104 43.6
lms main 2.344 · 104 40.2
mat1x3 main 1.773 · 104 38.5
matrix1 main 6.683 · 104 11.7
matrix2 main 6.411 · 104 11.0
n complex updates main 2.155 · 104 16.6
n real updates main 2.080 · 104 16.0
real update main 1.732 · 104 20.9

Average 2.772 · 104 22.2

Power Stone
blit blit 4.081 · 105 14.6
bcnt main 2.393 · 104 2.5
compress cl hash 2.010 · 105 0.1
engine engine 6.893 · 106 0.0
engine interpolate 7.884 · 106 0.0
g3fax rowout 1.887 · 106 3.5
pocsag find syndromes 3.605 · 105 7.1
pocsag num proc 1.245 · 105 10.5
pocsag alpha proc 2.460 · 105 13.8
pocsag normalized locator 2.784 · 105 7.4
v42 putcode 1.282 · 107 0.2

Average 2.829 · 106 5.4

Table 3. Cross-validation accuracy of the built models
Relative Error

Model Mean Standard Deviation
O0 40.72% 15.60%
O1 23.05% 15.94%
O2 34.34% 18.65%

infer that some of the O2 exclusive optimizations are not
performed by Chess compiler

In the rest of experiments we concentrate on the O1 opti-
mizations set model, which proved to be the most accurate.
Moreover, we do not apply the cross-validation process to
deeply analyze the accuracy of the predictions. Detailed re-
sults are reported in Table 2. The mean relative error (18.0%)
in this case is smaller since we are now using all the bench-
marks set.

The maximum error introduced in prediction is on func-
tions of the fft benchmarks and in particular on the function
fft inspca with 47.5%. These functions are characterized by
a large transfer of data performed at the beginning and at the
end of each function execution. The methodology does not
extract this type of information during the function analysis,
so the performance model does not correctly estimate them.
A second aspect which the analysis does not catch is the high
number of memory accesses of these functions.

Considering the average error on the whole suites, the er-
ror introduced on the Power Stone benchmarks is quite small
(5.4% with the maximum of 14.6 on the blit function) with
respect to the DSP Stone benchmarks (21.4% and 22.2%).
The different average error is due to the fact that Power Stone
benchmarks have longer and more complex functions. The
effects of a single optimization can be relatively much more
significant on a small function than on a large one, because
in the first case it can modify the whole function while it is
quite difficult that a single optimization modifies completely
a complex or big function. As a consequence, the error of
not correctly estimating the effect of an optimization is rela-
tively much more significant for small functions.

Finally, we compare the results of our methodology with
the ones produced by the works described in Section 1. The
technique presented in [12] can estimate the performance ef-
fects of one or more transformations on a code with an error
of 7.3%, but requires at least four runs of the application on
target platform. For this reason, if the target platform is not
available during the application design, this technique can
not be adopted. Moreover, even if a cycle-accurate simulator
is available, it can be too slow to be used during the design
space exploration where several estimations can be required.
On the other hand, the methodology we propose does not
need neither to use a simulator nor the target platform dur-
ing estimation. Use of a simulator during estimation is re-
quired also by the Cross Reply technique presented in [3] to
measure the execution time of the first runs of the different
parts of the function. Moreover, the authors do not report the
results of the estimation of the execution time of the single
DSP tasks.

Techniques presented in [11] and [9] both produce very
accurate results (error is about 2.0% for the first method and
few cycles for the second). Unfortunately these techniques
are applicable only to DSPs of which all architectural details
are known, since estimation is produced by directly schedul-



ing the assembly operations of the function on the real archi-
tecture. This limitation can impact very heavily on the results
of the design of the systems, since it restricts the component
selection to a limited set of the available DSPs.

Average prediction error of the methodology proposed by
Stolberg et al. [2] is of 9.2%, but their methodology requires
to have the execution time of all the kernels of the analyzed
applications. For this reason, it can not be applied, if the
execution time of a kernel is not known or if a kernel is
modified during the design flow.

4. Conclusions
In this paper we presented a methodology for building the
performance model of a DSP by combining GIMPLE anal-
ysis, profiling information and linear regression techniques.
The advantages of using this methodology in a design flow
are: it does not limit the choice of the components of the
target architecture, since the designer does not need a deep
knowledge of the DSP and of its tool chain, and it is enough
fast and accurate to be efficiently used during design space
exploration to drive the designer towards good quality solu-
tions.

The proposed methodology has been validated on a real
DSP processor, the MagicV processor from ATMEL, on two
different benchmark suites. The results show how our ap-
proach is able to take into account some of the optimization
performed by the DSP compiler and produces a model with
an average relative error of 18.0%.

Future works will improve two aspect of the proposed
methodology: modelization of memory accesses and op-
timizations selection. To overcome the first problem, we
will improve the GIMPLE analysis to retrieve information
which better models the memory accesses from the perfor-
mance point of view. The second improvement will consist
of adding an automatic technique to select which optimiza-
tions have to be applied before the GIMPLE analysis.

References
[1] P. Chandraiah and R. Doemer. Designer-controlled generation

of parallel and flexible heterogeneous mpsoc specification. In
DAC ’07, pages 787–790, New York, NY, USA, 2007. ACM.

[2] H. J. Stolberg, M. Bereković, and P. Pirsch. A platform-
independent methodology for performance estimation of
multimedia signal processing applications. J. VLSI Signal
Process. Syst., 41(2):139–151, 2005.

[3] L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and
H. Meyr. Multiprocessor performance estimation using hybrid
simulation. In DAC ’08, pages 325–330, New York, NY, USA,
2008. ACM.

[4] E. J. Tan and W. B. Heinzelman. Dsp architectures: past,
present and futures. SIGARCH Comput. Archit. News, 31(3):6–
19, 2003.

[5] J. C., K. Cyr, S. de Gregorio, J.-P. Giacalone, J. Webb, and
Y. Masse. Open multimedia application platform: enabling
multimedia applications in third generation wireless terminals

through a combined risc/dsp architecture. ICASSP ’01, 2:1009–
1012, 2001.

[6] MagicV VLIW DSP and Diopsis,
http://www.atmel.com/products/diopsis/.

[7] T. J. Lin, H. Y. Lin, C. M. Chao, C. W. Liu, and C. W. Jen. A
compact dsp core with static floating-point unit & its microcode
generation. In GLSVLSI ’04, pages 57–60, New York, NY,
USA, 2004. ACM.

[8] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor
system-on-chip (mpsoc) technology. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on,
27(10):1701–1713, Oct. 2008.

[9] W. So and A. G. Dean. Reaching fast code faster: using
modeling for efficient software thread integration on a vliw dsp.
In CASES ’06, pages 13–23, New York, NY, USA, 2006. ACM.

[10] GNU Compiler Collection. GCC, version 4.3,
http://gcc.gnu.org/.

[11] A. Pegatoquet, E. Gresset, M. Auguin, and L. Bianco.
Rapid development of optimized dsp code from a high level
description through software estimations. In DAC ’99, pages
823–826, New York, NY, USA, 1999. ACM.

[12] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P.
O’Boyle, G. Fursin, and O. Temam. Automatic performance
model construction for the fast software exploration of new
hardware designs. In CASES ’06, pages 24–34, New York, NY,
USA, 2006. ACM.

[13] Rafael Saavedra-Barrera, Alan J. Smith, and Eugene Miya.
Machine characterization based on an abstract high-level
language machine. SIGMETRICS Perform. Eval. Rev., 18(3):24,
1990.

[14] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani,
and B. Sridharan. Designing the McCAT Compiler Based on
a Family of Structured Intermediate Representations. In LCPC
’93, pages 406–420, 1993.

[15] M. P. Allen. Regression analysis with standardized variables,
chapter 10, pages 46–50. Springer US, 1997.

[16] S. Weisberg. Applied Linear Regression. Probability and
Statistics. Wiley, March 2005.

[17] Atmel corporation. http://www.atmel.com.

[18] PandA framework, http://trac.ws.dei.polimi.it/panda.

[19] T. Ball and J. R. Larus. Efficient path profiling. In MICRO-29,
pages 46–57, 1996.

[20] Target Compiler Technologies.
CHESS/CHECKERS, http://www.retarget.com.

[21] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data mining
tasks. In Lyle Ungar, Mark Craven, Dimitrios Gunopulos, and
Tina Eliassi-Rad, editors, KDD ’06, pages 935–940, New York,
NY, USA, August 2006. ACM.

[22] V. z̆ivojnović, Juan M. Velarde, C. Schläger, and H. Meyr.
DSPSTONE: A DSP-oriented benchmarking methodology. In
ICSPAT ’94, 1994.

[23] A. Malik, B. Moyer, and D. Cermak. A low power unified
cache architecture providing power and performance flexibility
(poster session). In ISLPED ’00, pages 241–243, New York,
NY, USA, 2000. ACM.


