3 research outputs found

    A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort

    Get PDF
    The rise in greenhouse gas emissions in cities and the excessive consumption of fossil energy resources has made the development of green spaces, such as green roofs, an increasingly important focus in urban areas. This study proposes a novel smart energy-comfort system for green roofs in housing estates that utilises integrated machine learning (ML), DesignBuilder (DB) software and Taguchi design computations for optimising green roof design and operation in buildings. The optimisation process maximises energy conservation and thermal comfort of the green roof buildings for effective parameters of green roofs including Leaf Area Index (P1), leaf reflectivity (P2), leaf emissivity (P3), and stomatal resistance (P4). The optimal solutions can result in a 12.8% increase in comfort hours and a 14% reduction in energy consumption compared to the base case. The ML analysis revealed that the adaptive network-based fuzzy inference system is the most appropriate method for predicting Energy-Comfort functions based on effective parameters, with a correlation coefficient greater than 97%. This novel smart framework for the optimal design of green roofs in buildings offers an innovative approach to achieving energy conservation and thermal comfort in urban areas

    A Plant Leaf Geometric Parameter Measurement System Based on the Android Platform

    No full text
    Automatic and efficient plant leaf geometry parameter measurement offers useful information for plant management. The objective of this study was to develop an efficient and effective leaf geometry parameter measurement system based on the Android phone platform. The Android mobile phone was used to process and measure geometric parameters of the leaf, such as length, width, perimeter, and area. First, initial leaf images were pre-processed by some image algorithms, then distortion calibration was proposed to eliminate image distortion. Next, a method for calculating leaf parameters by using the positive circumscribed rectangle of the leaf as a reference object was proposed to improve the measurement accuracy. The results demonstrated that the test distances from 235 to 260 mm and angles from 0 to 45 degrees had little influence on the leafs’ geometric parameters. Both lab and outdoor measurements of leaf parameters showed that the developed method and the standard method were highly correlated. In addition, for the same leaf, the results of different mobile phone measurements were not significantly different. The leaf geometry parameter measurement system based on the Android phone platform used for this study could produce high accuracy measurements for leaf geometry parameters
    corecore