6,989 research outputs found

    Covariogram of non-convex sets

    Full text link
    The covariogram of a compact set A contained in R^n is the function that to each x in R^n associates the volume of A intersected with (A+x). Recently it has been proved that the covariogram determines any planar convex body, in the class of all convex bodies. We extend the class of sets in which a planar convex body is determined by its covariogram. Moreover, we prove that there is no pair of non-congruent planar polyominoes consisting of less than 9 points that have equal discrete covariogram.Comment: 15 pages, 7 figures, accepted for publication on Mathematik

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    Packing and covering with balls on Busemann surfaces

    Full text link
    In this note we prove that for any compact subset SS of a Busemann surface (S,d)({\mathcal S},d) (in particular, for any simple polygon with geodesic metric) and any positive number δ\delta, the minimum number of closed balls of radius δ\delta with centers at S\mathcal S and covering the set SS is at most 19 times the maximum number of disjoint closed balls of radius δ\delta centered at points of SS: ν(S)ρ(S)19ν(S)\nu(S) \le \rho(S) \le 19\nu(S), where ρ(S)\rho(S) and ν(S)\nu(S) are the covering and the packing numbers of SS by δ{\delta}-balls.Comment: 27 page
    corecore