65 research outputs found

    Topological Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of the Weisfeiler--Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial predictive performance for graph and node classification tasks, both on synthetic data sets, which can be classified by humans using their topology but not by ordinary GNNs, and on real-world data

    On the Expressivity of Persistent Homology in Graph Learning

    Full text link
    Persistent homology, a technique from computational topology, has recently shown strong empirical performance in the context of graph classification. Being able to capture long range graph properties via higher-order topological features, such as cycles of arbitrary length, in combination with multi-scale topological descriptors, has improved predictive performance for data sets with prominent topological structures, such as molecules. At the same time, the theoretical properties of persistent homology have not been formally assessed in this context. This paper intends to bridge the gap between computational topology and graph machine learning by providing a brief introduction to persistent homology in the context of graphs, as well as a theoretical discussion and empirical analysis of its expressivity for graph learning tasks

    An end-to-end graph convolutional kernel support vector machine

    Get PDF
    A novel kernel-based support vector machine (SVM) for graph classification is proposed. The SVM feature space mapping consists of a sequence of graph convolutional layers, which generates a vector space representation for each vertex, followed by a pooling layer which generates a reproducing kernel Hilbert space (RKHS) representation for the graph. The use of a RKHS offers the ability to implicitly operate in this space using a kernel function without the computational complexity of explicitly mapping into it. The proposed model is trained in a supervised end-to-end manner whereby the convolutional layers, the kernel function and SVM parameters are jointly optimized with respect to a regularized classification loss. This approach is distinct from existing kernel-based graph classification models which instead either use feature engineering or unsupervised learning to define the kernel function. Experimental results demonstrate that the proposed model outperforms existing deep learning baseline models on a number of datasets

    Going beyond persistent homology using persistent homology

    Full text link
    Representational limits of message-passing graph neural networks (MP-GNNs), e.g., in terms of the Weisfeiler-Leman (WL) test for isomorphism, are well understood. Augmenting these graph models with topological features via persistent homology (PH) has gained prominence, but identifying the class of attributed graphs that PH can recognize remains open. We introduce a novel concept of color-separating sets to provide a complete resolution to this important problem. Specifically, we establish the necessary and sufficient conditions for distinguishing graphs based on the persistence of their connected components, obtained from filter functions on vertex and edge colors. Our constructions expose the limits of vertex- and edge-level PH, proving that neither category subsumes the other. Leveraging these theoretical insights, we propose RePHINE for learning topological features on graphs. RePHINE efficiently combines vertex- and edge-level PH, achieving a scheme that is provably more powerful than both. Integrating RePHINE into MP-GNNs boosts their expressive power, resulting in gains over standard PH on several benchmarks for graph classification.Comment: Accepted to NeurIPS 202
    • …
    corecore