3 research outputs found

    A PETSc parallel-in-time solver based on MGRIT algorithm

    Get PDF
    We address the development of a modular implementation of the MGRIT (MultiGrid-In-Time) algorithm to solve linear and nonlinear systems that arise from the discretization of evolutionary models with a parallel-in-time approach in the context of the PETSc (the Portable, Extensible Toolkit for Scientific computing) library. Our aim is to give the opportunity of predicting the performance gain achievable when using the MGRIT approach instead of the Time Stepping integrator (TS). To this end, we analyze the performance parameters of the algorithm that provide a-priori the best number of processing elements and grid levels to use to address the scaling of MGRIT, regarded as a parallel iterative algorithm proceeding along the time dimensio

    Multilevel convergence analysis of multigrid-reduction-in-time

    Full text link
    This paper presents a multilevel convergence framework for multigrid-reduction-in-time (MGRIT) as a generalization of previous two-grid estimates. The framework provides a priori upper bounds on the convergence of MGRIT V- and F-cycles, with different relaxation schemes, by deriving the respective residual and error propagation operators. The residual and error operators are functions of the time stepping operator, analyzed directly and bounded in norm, both numerically and analytically. We present various upper bounds of different computational cost and varying sharpness. These upper bounds are complemented by proposing analytic formulae for the approximate convergence factor of V-cycle algorithms that take the number of fine grid time points, the temporal coarsening factors, and the eigenvalues of the time stepping operator as parameters. The paper concludes with supporting numerical investigations of parabolic (anisotropic diffusion) and hyperbolic (wave equation) model problems. We assess the sharpness of the bounds and the quality of the approximate convergence factors. Observations from these numerical investigations demonstrate the value of the proposed multilevel convergence framework for estimating MGRIT convergence a priori and for the design of a convergent algorithm. We further highlight that observations in the literature are captured by the theory, including that two-level Parareal and multilevel MGRIT with F-relaxation do not yield scalable algorithms and the benefit of a stronger relaxation scheme. An important observation is that with increasing numbers of levels MGRIT convergence deteriorates for the hyperbolic model problem, while constant convergence factors can be achieved for the diffusion equation. The theory also indicates that L-stable Runge-Kutta schemes are more amendable to multilevel parallel-in-time integration with MGRIT than A-stable Runge-Kutta schemes.Comment: 26 pages; 17 pages Supplementary Material
    corecore