4,652 research outputs found

    Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs

    Full text link
    Previous work has shown that there are two major complexity barriers in the synthesis of fault-tolerant distributed programs: (1) generation of fault-span, the set of states reachable in the presence of faults, and (2) resolving deadlock states, from where the program has no outgoing transitions. Of these, the former closely resembles with model checking and, hence, techniques for efficient verification are directly applicable to it. Hence, we focus on expediting the latter with the use of multi-core technology. We present two approaches for parallelization by considering different design choices. The first approach is based on the computation of equivalence classes of program transitions (called group computation) that are needed due to the issue of distribution (i.e., inability of processes to atomically read and write all program variables). We show that in most cases the speedup of this approach is close to the ideal speedup and in some cases it is superlinear. The second approach uses traditional technique of partitioning deadlock states among multiple threads. However, our experiments show that the speedup for this approach is small. Consequently, our analysis demonstrates that a simple approach of parallelizing the group computation is likely to be the effective method for using multi-core computing in the context of deadlock resolution

    FairLedger: A Fair Blockchain Protocol for Financial Institutions

    Get PDF
    Financial institutions are currently looking into technologies for permissioned blockchains. A major effort in this direction is Hyperledger, an open source project hosted by the Linux Foundation and backed by a consortium of over a hundred companies. A key component in permissioned blockchain protocols is a byzantine fault tolerant (BFT) consensus engine that orders transactions. However, currently available BFT solutions in Hyperledger (as well as in the literature at large) are inadequate for financial settings; they are not designed to ensure fairness or to tolerate selfish behavior that arises when financial institutions strive to maximize their own profit. We present FairLedger, a permissioned blockchain BFT protocol, which is fair, designed to deal with rational behavior, and, no less important, easy to understand and implement. The secret sauce of our protocol is a new communication abstraction, called detectable all-to-all (DA2A), which allows us to detect participants (byzantine or rational) that deviate from the protocol, and punish them. We implement FairLedger in the Hyperledger open source project, using Iroha framework, one of the biggest projects therein. To evaluate FairLegder's performance, we also implement it in the PBFT framework and compare the two protocols. Our results show that in failure-free scenarios FairLedger achieves better throughput than both Iroha's implementation and PBFT in wide-area settings

    Parameterizable Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network, despite the presence of Byzantine failures: some nodes are malicious and behave arbitrarly. We focus on non-cryptographic solutions. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the good information), but require a highly connected network. A probabilistic approach was recently proposed for loosely connected networks: the Byzantine failures are randomly distributed, and the correct nodes deliver the good information with high probability. A first solution require the nodes to initially know their position on the network, which may be difficult or impossible in self-organizing or dynamic networks. A second solution relaxed this hypothesis but has much weaker Byzantine tolerance guarantees. In this paper, we propose a parameterizable broadcast protocol that does not require nodes to have any knowledge about the network. We give a deterministic technique to compute a set of nodes that always deliver authentic information, for a given set of Byzantine failures. Then, we use this technique to experimentally evaluate our protocol, and show that it significantely outperforms previous solutions with the same hypotheses. Important disclaimer: these results have NOT yet been published in an international conference or journal. This is just a technical report presenting intermediary and incomplete results. A generalized version of these results may be under submission
    • …
    corecore