5 research outputs found

    The COST IRACON Geometry-based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections

    Full text link
    Vehicle-to-vehicle (V2V) wireless communications can improve traffic safety at road intersections and enable congestion avoidance. However, detailed knowledge about the wireless propagation channel is needed for the development and realistic assessment of V2V communication systems. We present a novel geometry-based stochastic MIMO channel model with support for frequencies in the band of 5.2-6.2 GHz. The model is based on extensive high-resolution measurements at different road intersections in the city of Berlin, Germany. We extend existing models, by including the effects of various obstructions, higher order interactions, and by introducing an angular gain function for the scatterers. Scatterer locations have been identified and mapped to measured multi-path trajectories using a measurement-based ray tracing method and a subsequent RANSAC algorithm. The developed model is parameterized, and using the measured propagation paths that have been mapped to scatterer locations, model parameters are estimated. The time variant power fading of individual multi-path components is found to be best modeled by a Gamma process with an exponential autocorrelation. The path coherence distance is estimated to be in the range of 0-2 m. The model is also validated against measurement data, showing that the developed model accurately captures the behavior of the measured channel gain, Doppler spread, and delay spread. This is also the case for intersections that have not been used when estimating model parameters.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    Virtual Drive Testing Over-The-Air for Vehicular Communications

    Get PDF
    Multiple-input multiple-output (MIMO) over-the-air (OTA) testing is a standardized procedure to evaluate the performance of MIMO-capable devices such as mobile phones and laptops. With the growth of the vehicle-to-everything (V2X) service, the need for vehicular communication testing is expected to increase significantly. The so-called multi-probe anechoic chamber (MPAC) setup is standardized for MIMO OTA testing. Typically, a test zone of 0.85 wavelength in diameter can be achieved with an 8-probe MPAC setup, which can encompass device-under-test (DUT) of small form factors. However, a test zone of this size may not be large enough to encompass DUTs such as cars. In this article, the sufficient number of OTA probes for the MPAC setup for car testing is investigated with respect to the emulation accuracy. Our investigation shows that the effective antenna distance of the DUT is more critical than its physical dimensions to determine the required number of OTA probes. In addition, throughput measurements are performed under the standard SCME UMa and UMi channel models with the 8-probe MPAC setup and the wireless cable setup, i.e. another standardized testing setup. The results show reasonably good agreement between the two setups for MIMO OTA testing with cars under the standard channel models

    A path loss and shadowing model for multilink vehicle-to-vehicle channels in urban intersections

    No full text
    The non line-of-sight (NLOS) scenario in urban intersections is critical in terms of traffic safety—a scenario where Vehicle-to-Vehicle (V2V) communication really can make a difference by enabling communication and detection of vehicles around building corners. A few NLOS V2V channel models exist in the literature but they all have some form of limitation, and therefore further research is need. In this paper, we present an alternative NLOS path loss model based on analysis from measured V2V communication channels at 5.9 GHz between six vehicles in two urban intersections. We analyze the auto-correlation of the large scale fading process and the influence of the path loss model on this. In cases where a proper model for the path loss and the antenna pattern is included, the de-correlation distance for the auto-correlation is as low as 2–4 m, and the cross-correlation for the large scale fading between different links can be neglected. Otherwise, the de-correlation distance has to be much longer and the cross-correlation between the different communication links needs to be considered separately, causing the computational complexity to be unnecessarily large. With these findings, we stress that vehicular ad-hoc network (VANET) simulations should be based on the current geometry, i.e., a proper path loss model should be applied depending on whether the V2V communication is blocked or not by other vehicles or buildings

    Novel improvements of empirical wireless channel models and proposals of machine-learning-based path loss prediction models for future communication networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Path loss is the primary factor that determines the overall coverage of networks. Therefore, designing reliable wireless communication systems requires accurate path loss prediction models. Future wireless mobile systems will rely mainly on the super-high frequency (SHF) and the millimeter-wave (mmWave) frequency bands due to the massively available bandwidths that will meet projected users’ demands, such as the needs of the fifth-generation (5G) wireless systems and other high-speed multimedia services. However, these bands are more sensitive and exhibit a different propagation behavior compared to the frequency bands below 6 GHz. Hence, improving the existing models and developing new models are vital for characterizing the wireless communication channel in both indoor and outdoor environments for future SHF and mmWave services. This dissertation proposes new path loss and LOS probability models and efficiently improves the well-known close-in (CI) free space reference distance model and the floating-intercept (FI) model. Real measured data was taken for both line-of-sight (LOS) and non-line-of-sight (NLOS) communication scenarios in a typical indoor corridor environment at three selected frequencies within the SHF band, namely 14 GHz, 18 GHz, and 22 GHz. The research finding of this work reveals that the proposed models have better performance in terms of their accuracy in fitting real measured data collected from measurement campaigns. In addition, this research studies the impact of the angle of arrival and the antenna heights on the current and improved CI and FI models. The results show that the proposed improved models provide better stability and sensitivity to the change of these parameters. Furthermore, the mean square error between the models and their improved versions was presented as another proof of the superiority of the proposed improvement. Moreover, this research shows that shadow fading’s standard deviation can have a notable reduction in both the LOS and NLOS scenarios (especially in the NLOS), which means higher precision in predicting the path loss compared to the existing standard models. After that, the dissertation presents investigations on high-ordering the dependency of the standard CI path loss model on the distance between the transmitting and the receiving antennas at the logarithmic scale. Two improved models are provided and discussed: second-order CI and third-order CI models. The main results reveal that the proposed two models outperform the standard CI model and notable reductions in the shadow fading’s standard deviation values as the model’s order increases, which means that more precision is provided. This part of the dissertation also provides a trade-off study between the model’s accuracy and simplicity
    corecore