5 research outputs found

    Lex-Partitioning: A New Option for BDD Search

    Full text link
    For the exploration of large state spaces, symbolic search using binary decision diagrams (BDDs) can save huge amounts of memory and computation time. State sets are represented and modified by accessing and manipulating their characteristic functions. BDD partitioning is used to compute the image as the disjunction of smaller subimages. In this paper, we propose a novel BDD partitioning option. The partitioning is lexicographical in the binary representation of the states contained in the set that is represented by a BDD and uniform with respect to the number of states represented. The motivation of controlling the state set sizes in the partitioning is to eventually bridge the gap between explicit and symbolic search. Let n be the size of the binary state vector. We propose an O(n) ranking and unranking scheme that supports negated edges and operates on top of precomputed satcount values. For the uniform split of a BDD, we then use unranking to provide paths along which we partition the BDDs. In a shared BDD representation the efforts are O(n). The algorithms are fully integrated in the CUDD library and evaluated in strongly solving general game playing benchmarks.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611

    ParaGnosis:A Tool for Parallel Knowledge Compilation

    Get PDF
    ParaGnosis (https://doi.org/10.5281/zenodo.7312034, https://zenodo.org/badge/latestdoi/560170574, Alternative url: https://github.com/gisodal/paragnosis, Demo url: https://github.com/gisodal/paragnosis/blob/main/DEMO.md ) is an open-source tool that supports inference queries on Bayesian networks through weighted model counting. In the knowledge compilation step, the input Bayesian network is encoded as propositional logic and then compiled into a knowledge base in decision diagram representation. The tool supports various diagram formats, including the Weighted-Positive Binary Decision Diagram (WPBDD) which can concisely represent discrete probability distributions. Once compiled, the probabilistic knowledge base can be queried in the inference step. To efficiently implement both steps, ParaGnosis uses simulated annealing to split the knowledge base into a number of partitions. This further reduces the decision diagram size and crucially enables parallelism in both the compilation and the inference steps. Experiments demonstrate that this partitioned approach, in combination with the WPBDD representation, can outperform other approaches in the knowledge compilation step, at the cost of slightly more expensive inference queries. Additionally, the tool can attain 15-fold parallel speedups using 64 cores.</p

    Probabilistic Inference Using Partitioned Bayesian Networks:Introducing a Compositional Framework

    Get PDF
    Probability theory offers an intuitive and formally sound way to reason in situations that involve uncertainty. The automation of probabilistic reasoning has many applications such as predicting future events or prognostics, providing decision support, action planning under uncertainty, dealing with multiple uncertain measurements, making a diagnosis, and so forth. Bayesian networks in particular have been used to represent probability distributions that model the various applications of uncertainty reasoning. However, present-day automated reasoning approaches involving uncertainty struggle when models increase in size and complexity to fit real-world applications.In this thesis, we explore and extend a state-of-the-art automated reasoning method, called inference by Weighted Model Counting (WMC), when applied to increasingly complex Bayesian network models. WMC is comprised of two distinct phases: compilation and inference. The computational cost of compilation has limited the applicability of WMC. To overcome this limitation we have proposed theoretical and practical solutions that have been tested extensively in empirical studies using real-world Bayesian network models.We have proposed a weighted variant of OBDDs, called Weighted Positive Binary Decision Diagrams (WPBDD), which in turn is based on the new notion of positive Shannon decomposition. WPBDDs are particularly well suited to represent discrete probabilistic models. The conciseness of WPBDDs leads to a reduction in the cost of probabilistic inference.We have introduced Compositional Weighted Model Counting (CWMC), a language-agnostic framework for probabilistic inference that partitions a Bayesian network into subproblems. These subproblems are then compiled and subsequently composed in order to perform inference. This approach significantly reduces the cost of compilation, yet increases the cost of inference. The best results are obtained by seeking a partitioning that allows compilation to (barely) become feasible, but no more, as compilation cost can be amortized over multiple inference queries.Theoretical concepts have been implemented in a readily available open-source tool called ParaGnosis. Further implementational improvements have been found through parallelism, by exploiting independencies that are introduced by CWMC. The proposed methods combined push the boundaries of WMC, allowing this state-of-the-art method to be used on much larger models than before

    A Partitioning Methodology for BDD-based Verification

    No full text
    ABSTRACT The main challenge in BDD based verification is dealing with the memory explosion problem during reachability analysis. In this paper we advocate a methodology to handle this problem based on state space partitioning of functions as well as relations. We investigate the key questions of how to perform partitioning in reachability based verification and provide suitable algorithms. We also address the problem of instability of BDD based verification by automatically picking the best configuration from different short traces of the reachability computation. Our approach drastically decreases verification time, often in orders of magnitude
    corecore