12,889 research outputs found

    Differential Evolution for Multiobjective Portfolio Optimization

    Get PDF
    Financial portfolio optimization is a challenging problem. First, the problem is multiobjective (i.e.: minimize risk and maximize profit) and the objective functions are often multimodal and non smooth (e.g.: value at risk). Second, managers have often to face real-world constraints, which are typically non-linear. Hence, conventional optimization techniques, such as quadratic programming, cannot be used. Stochastic search heuristic can be an attractive alternative. In this paper, we propose a new multiobjective algorithm for portfolio optimization: DEMPO - Differential Evolution for Multiobjective Portfolio Optimization. The main advantage of this new algorithm is its generality, i.e., the ability to tackle a portfolio optimization task as it is, without simplifications. Our empirical results show the capability of our approach of obtaining highly accurate results in very reasonable runtime, in comparison with quadratic programming and another state-of-art search heuristic, the so-called NSGA II.Portfolio Optimization, Multiobjective, Real-world Constraints, Value at Risk, Expected Shortfall, Differential Evolution

    Beyond Biomass: Valuing Genetic Diversity in Natural Resource Management

    Get PDF
    Strategies for increasing production of goods from working and natural systems have raised concerns that the diversity of species on which these services depend may be eroding. This loss of natural capital threatens to homogenize global food supplies and compromise the stability of human welfare. We assess the trade off between artificial augmentation of biomass and degradation of biodiversity underlying a populations' ability to adapt to shocks. Our application involves the augmentation of wild stocks of salmon. Practices in this system have generated warnings that genetic erosion may lead to a loss of the “portfolio effect” and the value of this loss is not accounted for in decision making. We construct an integrated bioeconomic model of salmon biomass and genetic diversity. Our results show how practices that homogenize natural systems can still generate positive returns. However, the substitution of more physical capital and labor for natural capital must be maintained for gains to persist, weakens the capacity for adaptation should this investment cease, and can cause substantial loss of population wildness. We apply an emerging optimization method—approximate dynamic programming—to solve the model without simplifying restrictions imposed previously

    Efficient Estimation of Firm-Specific Betas and its Benefits for Asset Pricing Tests and Portfolio Choice

    Get PDF
    We improve both the specification and estimation of firm-specific betas. Time variation in betas is modeled by combining a parametric specification based on economic theory with a non-parametric approach based on data-driven filters. We increase the precision of individual beta estimates by setting up a hierarchical Bayesian panel data model that imposes a common structure on parameters. We show that these accurate beta estimates lead to a large increase in the cross-sectional explanatory power of the conditional CAPM. Using the betas to forecast the covariance matrix of returns also results in a significant improvement in the out-of-sample performance of minimum variance portfolios.asset pricing; portfolio choice; time-varying betas; Bayesian econometrics; panel data

    Efficient and robust estimation for financial returns: an approach based on q-entropy

    Get PDF
    We consider a new robust parametric estimation procedure, which minimizes an empirical version of the Havrda-CharvĂ t-Tsallis entropy. The resulting estimator adapts according to the discrepancy between the data and the assumed model by tuning a single constant q, which controls the trade-off between robustness and effciency. The method is applied to expected return and volatility estimation of financial asset returns under multivariate normality. Theoretical properties, ease of implementability and empirical results on simulated and financial data make it a valid alternative to classic robust estimators and semi-parametric minimum divergence methods based on kernel smoothing.q-entropy; robust estimation; power-divergence; financial returns
    • …
    corecore