43,652 research outputs found

    Xyce Parallel Electronic Simulator : users' guide.

    Full text link
    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory

    Xyce parallel electronic simulator : users' guide.

    Full text link
    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory

    Large-scale Reservoir Simulations on IBM Blue Gene/Q

    Full text link
    This paper presents our work on simulation of large-scale reservoir models on IBM Blue Gene/Q and studying the scalability of our parallel reservoir simulators. An in-house black oil simulator has been implemented. It uses MPI for communication and is capable of simulating reservoir models with hundreds of millions of grid cells. Benchmarks show that our parallel simulator are thousands of times faster than sequential simulators that designed for workstations and personal computers, and the simulator has excellent scalability

    High performance computing simulator for the performance assessment of trajectory based operations

    Get PDF
    High performance computing (HPC), both at hardware and software level, has demonstrated significant improve- ments in processing large datasets in a timely manner. However, HPC in the field of air traffic management (ATM) can be much more than only a time reducing tool. It could also be used to build an ATM simulator in which distributed scenarios where decentralized elements (airspace users) interact through a centralized manager in order to generate a trajectory-optimized conflict-free scenario. In this work, we introduce an early prototype of an ATM simulator, focusing on air traffic flow management at strategic, pre-tactical and tactical levels, which allows the calculation of safety and efficiency indicators for optimized trajectories, both at individual and network level. The software architecture of the simulator, relying on a HPC cluster of computers, has been preliminary tested with a set of flights whose trajectory vertical profiles have been optimized according to two different concepts of operations: conventional cruise operations (i.e. flying at constant altitudes and according to the flight levels scheme rules) and continuous climb cruise operations (i.e., optimizing the trajectories with no vertical constraints). The novel ATM simulator has been tested to show preliminary benchmarking results between these two concepts of operations. The simulator here presented can contribute as a testbed to evaluate the potential benefits of future Trajectory Based Operations and to understand the complex relationships among the different ATM key performance areasPeer ReviewedPostprint (published version

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017
    • …
    corecore