12,370 research outputs found

    Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture

    Get PDF
    Superconducting nanowire avalanche single-photon detectors (SNAPs) with n parallel nanowires are advantageous over single-nanowire detectors because their output signal amplitude scales linearly with n. However, the SNAP architecture has not been viably demonstrated for n > 4. To increase n for larger signal amplification, we designed a multi-stage, successive-avalanche architecture which used nanowires, connected via choke inductors in a binary-tree layout. We demonstrated an avalanche detector with n = 8 parallel nanowires and achieved eight-fold signal amplification, with a timing jitter of 54 ps.Comment: 7 pages, 3 figure

    Remote capacitive sensing in two-dimension quantum-dot arrays

    Get PDF
    We investigate gate-defined quantum dots in silicon on insulator nanowire field-effect transistors fabricated using a foundry-compatible fully-depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2Ă—n2\times n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2Ă—\times2 array, and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, 'floating' electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure.Comment: 9 pages, 3 figures, 35 cites and supplementar

    Stabilizing entanglement autonomously between two superconducting qubits

    Full text link
    Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.Comment: 39 pages, 7 figure

    High-Speed, Photon Counting CCD Cameras for Astronomy

    Full text link
    The design of electron multiplying CCD cameras require a very different approach from that appropriate for slow scan CCD operation. This paper describes the main problems in using electron multiplying CCDs for high-speed, photon counting applications in astronomy and how these may be substantially overcome. With careful design it is possible to operate the E2V Technologies L3CCDs at rates well in excess of that claimed by the manufacturer, and that levels of clock induced charge dramatically lower than those experienced with commercial cameras that need to operate at unity gain. Measurements of the performance of the E2V Technologies CCD201 operating at 26 MHz will be presented together with a guide to the effective reduction of clock induced charge levels. Examples of astronomical results obtained with our cameras are presented.Comment: 11 pages, 5 figure

    High performances monolithic CMOS detectors for space applications

    Get PDF
    During the last 10 years, research about CMOS image sensors (also called APS -Active Pixel Sensors) has been intensively carried out, in order to offer an alternative to CCDs as image sensors. This is particularly the case for space applications as CMOS image sensors feature characteristics which are obviously of interest for flight hardware: parallel or semi-parallel architecture, on chip control and processing electronics, low power dissipation, high level ofradiation tolerance... Many image sensor companies, institutes and laboratories have demonstrated the compatibility of CMOS image sensors with consumer applications: micro-cameras, video-conferencing, digital-still cameras. And recent designs have shown that APS is getting closer to the CCD in terms ofperformance level. However, the large majority ofthe existing products do not offer the specific features which are required for many space applications. ASTRI1JM and SUPAERO/CIMI have decided to work together in view of developing CMOS image sensors dedicated to space business. After a brief presentation of the team organisation for space image sensor design and production, the latest results of a high performances 512x512 pixels CMOS device characterisation are presented with emphasis on the achieved electro-optical performance. Finally, the on going and short-term coming activities of the team are discussed
    • …
    corecore