12,368 research outputs found

    Object-oriented implementations of the MPDATA advection equation solver in C++, Python and Fortran

    Full text link
    Three object-oriented implementations of a prototype solver of the advection equation are introduced. The presented programs are based on Blitz++ (C++), NumPy (Python), and Fortran's built-in array containers. The solvers include an implementation of the Multidimensional Positive-Definite Advective Transport Algorithm (MPDATA). The introduced codes exemplify how the application of object-oriented programming (OOP) techniques allows to reproduce the mathematical notation used in the literature within the program code. A discussion on the tradeoffs of the programming language choice is presented. The main angles of comparison are code brevity and syntax clarity (and hence maintainability and auditability) as well as performance. In the case of Python, a significant performance gain is observed when switching from the standard interpreter (CPython) to the PyPy implementation of Python. Entire source code of all three implementations is embedded in the text and is licensed under the terms of the GNU GPL license

    Managing Communication Latency-Hiding at Runtime for Parallel Programming Languages and Libraries

    Full text link
    This work introduces a runtime model for managing communication with support for latency-hiding. The model enables non-computer science researchers to exploit communication latency-hiding techniques seamlessly. For compiled languages, it is often possible to create efficient schedules for communication, but this is not the case for interpreted languages. By maintaining data dependencies between scheduled operations, it is possible to aggressively initiate communication and lazily evaluate tasks to allow maximal time for the communication to finish before entering a wait state. We implement a heuristic of this model in DistNumPy, an auto-parallelizing version of numerical Python that allows sequential NumPy programs to run on distributed memory architectures. Furthermore, we present performance comparisons for eight benchmarks with and without automatic latency-hiding. The results shows that our model reduces the time spent on waiting for communication as much as 27 times, from a maximum of 54% to only 2% of the total execution time, in a stencil application.Comment: PREPRIN

    Learning from the Success of MPI

    Full text link
    The Message Passing Interface (MPI) has been extremely successful as a portable way to program high-performance parallel computers. This success has occurred in spite of the view of many that message passing is difficult and that other approaches, including automatic parallelization and directive-based parallelism, are easier to use. This paper argues that MPI has succeeded because it addresses all of the important issues in providing a parallel programming model.Comment: 12 pages, 1 figur

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF

    Vienna FORTRAN: A FORTRAN language extension for distributed memory multiprocessors

    Get PDF
    Exploiting the performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna FORTRAN is a language extension of FORTRAN which provides the user with a wide range of facilities for such mapping of data structures. However, programs in Vienna FORTRAN are written using global data references. Thus, the user has the advantage of a shared memory programming paradigm while explicitly controlling the placement of data. The basic features of Vienna FORTRAN are presented along with a set of examples illustrating the use of these features
    corecore