2 research outputs found

    Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media

    Full text link
    In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity).Comment: 28 page

    Doctor of Philosophy

    Get PDF
    dissertationPartial differential equations (PDEs) are widely used in science and engineering to model phenomena such as sound, heat, and electrostatics. In many practical science and engineering applications, the solutions of PDEs require the tessellation of computational domains into unstructured meshes and entail computationally expensive and time-consuming processes. Therefore, efficient and fast PDE solving techniques on unstructured meshes are important in these applications. Relative to CPUs, the faster growth curves in the speed and greater power efficiency of the SIMD streaming processors, such as GPUs, have gained them an increasingly important role in the high-performance computing area. Combining suitable parallel algorithms and these streaming processors, we can develop very efficient numerical solvers of PDEs. The contributions of this dissertation are twofold: proposal of two general strategies to design efficient PDE solvers on GPUs and the specific applications of these strategies to solve different types of PDEs. Specifically, this dissertation consists of four parts. First, we describe the general strategies, the domain decomposition strategy and the hybrid gathering strategy. Next, we introduce a parallel algorithm for solving the eikonal equation on fully unstructured meshes efficiently. Third, we present the algorithms and data structures necessary to move the entire FEM pipeline to the GPU. Fourth, we propose a parallel algorithm for solving the levelset equation on fully unstructured 2D or 3D meshes or manifolds. This algorithm combines a narrowband scheme with domain decomposition for efficient levelset equation solving
    corecore