1,702 research outputs found

    Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle Routing Problem with Time Windows

    Full text link
    The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to reduce the cost of moving goods between several destinations while accommodating constraints like set time windows for certain locations and vehicle capacity. Applications of the VRPTW problem in the real world include Supply Chain Management (SCM) and logistic dispatching, both of which are crucial to the economy and are expanding quickly as work habits change. Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle Swarm Optimization (PSO) have been found to work effectively, however, they can experience premature convergence. To lower the risk of PSO's premature convergence, the authors have solved VRPTW in this paper utilising a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature. Also, comparisons with two cutting-edge algorithms from the literature show how competitive the suggested algorithm is

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Green Vehicle Routing Optimization Based on Carbon Emission and Multiobjective Hybrid Quantum Immune Algorithm

    Get PDF
    © 2018 Xiao-Hong Liu et al. Green Vehicle Routing Optimization Problem (GVROP) is currently a scientific research problem that takes into account the environmental impact and resource efficiency. Therefore, the optimal allocation of resources and the carbon emission in GVROP are becoming more and more important. In order to improve the delivery efficiency and reduce the cost of distribution requirements through intelligent optimization method, a novel multiobjective hybrid quantum immune algorithm based on cloud model (C-HQIA) is put forward. Simultaneously, the computational results have proved that the C-HQIA is an efficient algorithm for the GVROP. We also found that the parameter optimization of the C-HQIA is related to the types of artificial intelligence algorithms. Consequently, the GVROP and the C-HQIA have important theoretical and practical significance

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Planning and reconfigurable control of a fleet of unmanned vehicles for taxi operations in airport environment

    Get PDF
    The optimization of airport operations has gained increasing interest by the aeronautical community, due to the substantial growth in the number of airport movements (landings and take-offs) experienced in the past decades all over the world. Forecasts have confirmed this trend also for the next decades. The result of the expansion of air traffic is an increasing congestion of airports, especially in taxiways and runways, leading to additional amount of fuel burnt by airplanes during taxi operations, causing additional pollution and costs for airlines. In order to reduce the impact of taxi operations, different solutions have been proposed in literature; the solution which this dissertation refers to uses autonomous electric vehicles to tow airplanes between parking lots and runways. Although several analyses have been proposed in literature, showing the feasibility and the effectiveness of this approach in reducing the environmental impact, at the beginning of the doctoral activity no solutions were proposed, on how to manage the fleet of unmanned vehicles inside the airport environment. Therefore, the research activity has focused on the development of algorithms able to provide pushback tractor (also referred as tugs) autopilots with conflict-free schedules. The main objective of the optimization algorithms is to minimize the tug energy consumption, while performing just-in-time runway operations: departing airplanes are delivered only when they can take-off and the taxi-in phase starts as soon as the aircraft clears the runway and connects to the tractor. Two models, one based on continuous time and one on discrete time evolution, were developed to simulate the taxi phases within the optimization scheme. A piecewise-linear model has also been proposed to evaluate the energy consumed by the tugs during the assigned missions. Furthermore, three optimization algorithms were developed: two hybrid versions of the particle swarm optimization and a tree search heuristic. The following functional requirements for the management algorithm were defined: the optimization model must be easily adapted to different airports with different layout (reconfigurability); the generated schedule must always be conflict-free; and the computational time required to process a time horizon of 1h must be less than 15min. In order to improve its performance, the particle swarm optimization was hybridized with a hill-climb meta-heuristic; a second hybridization was performed by means of the random variable search, an algorithm of the family of the variable neighborhood search. The neighborhood size for the random variable search was considered varying with inverse proportionality to the distance between the actual considered solution and the optimal one found so far. Finally, a tree search heuristic was developed to find the runway sequence, among all the possible sequences of take-offs and landings for a given flight schedule, which can be realized with a series of taxi trajectories that require minimum energy consumption. Given the taxi schedule generated by the aforementioned optimization algorithms a tug dispatch algorithm, assigns a vehicle to each mission. The three optimization schemes and the two mathematical models were tested on several test cases among three airports: the Turin-Caselle airport, the Milan-Malpensa airport, and the Amsterdam airport Schiphol. The cost required to perform the generated schedules using the autonomous tugs was compared to the cost required to perform the taxi using the aircraft engines. The proposed approach resulted always more convenient than the classical one

    Optimized Model Simulation of a Capacitated Vehicle Routing problem based on Firefly Algorithm

    Get PDF
    This paper presents an optimized solution to a capacitated vehicle routing (CVRP) model using firefly algorithm (FFA). The main objective of a CVRP is to obtain the minimum possible total travelled distance across a search space. The conventional model is a formal description involving mathematical equations formulated to simplify a more complex structure of logistic problems. These logistic problems are generalized as the vehicle routing problem (VRP). When the capacity of the vehicle is considered, the resulting formulation is termed the capacitated vehicle routing problem (CVRP). In a practical scenario, the complexity of CVRP increases when the number of pickup or drop-off points increase making it difficult to solve using exact methods. Thus, this paper employed the intelligent behavior of FFA for solving the CVRP model. Two instances of solid waste management and supply chain problems is used to evaluate the performance of the FFA approach. In comparison with particle swarm optimization and few other ascribed metaheuristic techniques for CVRP, results showed that this approach is very efficient in solving a CVRP model
    • 

    corecore