35,525 research outputs found

    ART 2-A: An Adaptive Resonance Algorithm for Rapid Category Learning and Recognition

    Full text link
    This article introduces ART 2-A, an efficient algorithm that emulates the self-organizing pattern recognition and hypothesis testing properties of the ART 2 neural network architecture, but at a speed two to three orders of magnitude faster. Analysis and simulations show how the ART 2-A systems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate learning rates. Intermediate learning rates permit fast commitment of category nodes but slow recoding, analogous to properties of word frequency effects, encoding specificity effects, and episodic memory. Better noise tolerance is hereby achieved without a loss of learning stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm. The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural computation.BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088

    GPU Acceleration of Image Convolution using Spatially-varying Kernel

    Full text link
    Image subtraction in astronomy is a tool for transient object discovery such as asteroids, extra-solar planets and supernovae. To match point spread functions (PSFs) between images of the same field taken at different times a convolution technique is used. Particularly suitable for large-scale images is a computationally intensive spatially-varying kernel. The underlying algorithm is inherently massively parallel due to unique kernel generation at every pixel location. The spatially-varying kernel cannot be efficiently computed through the Convolution Theorem, and thus does not lend itself to acceleration by Fast Fourier Transform (FFT). This work presents results of accelerated implementation of the spatially-varying kernel image convolution in multi-cores with OpenMP and graphic processing units (GPUs). Typical speedups over ANSI-C were a factor of 50 and a factor of 1000 over the initial IDL implementation, demonstrating that the techniques are a practical and high impact path to terabyte-per-night image pipelines and petascale processing.Comment: 4 pages. Accepted to IEEE-ICIP 201

    Structural analysis of intrinsically disordered proteins: computer atomistic simulation

    Get PDF
    Intrinsically disordered proteins (IDPs) are biomolecules that do not have a definite 3D structure; their role in the biochemical network of a cell relates to their ability to switch rapidly among different secondary and tertiary structures. For this reason, applying a simulation computer program to their structural study turns out to be problematic, as their dynamical simulation cannot start from a known list of atomistic positions, as is the case for globular proteins that do crystallize and that one can analyse by X-ray spectroscopy to determine their structure. We have established a method to perform a computer simulation of these proteins, apt to gather statistically significant data on their transient structures. The only required input to start the procedure is the primary sequence of the disordered domains of the protein, and the 3D structure of the ordered domains, if any. For a fully disordered protein the method is as follows: (a) The first step is the creation of a multi-rod-like configuration of the molecule, derived from its primary sequence. This structure evolves dynamically in vacuo or in an implicit model of solvent, until its gyration radius - or any other measure of the overall configuration of the molecule - reaches the experimental average value; at this point, one may follow two different paths. (b1) If the study focuses on transient secondary structures of the molecule, one puts the structure obtained at the end of the first step in a box containing solvent molecules in explicit implementation, and a standard molecular dynamics simulation follows. (b2) If the study focuses on the tertiary structure of the molecule, a larger sampling of the phase space is required, with the molecule moving in very large and diverse regions of the phase space. To this end, the structure of the IDP is let evolve dynamically in an implicit solvent using metadynamics, an algorithm that keeps track of the regions of the phase space already sampled, and forces the system to wander in further regions of the phase space. (c) One can increase the accuracy of the statistical information gathered in both cases by fitting, where available, experimental data of the protein. In this step one extracts an ensemble of ’best’ conformers from the pool of all configurations produced in the simulated dynamics. One derives this ensemble by means of an ensemble optimization method, implementing a genetic algorithm. We have applied this procedure to the simulation of tau, one of the largest fully disordered proteins, which is involved in the development of Alzheimer’s disease and of other neurodegenerative diseases. We have combined the results of our simulation with small-angle X-ray scattering experimental data to extract from the dynamics an optimized ensemble of most probable conformers of tau. The method can be easily adapted to IDPs entailing ordered domains

    Hybrid-State Free Precession in Nuclear Magnetic Resonance

    Full text link
    The dynamics of large spin-1/2 ensembles in the presence of a varying magnetic field are commonly described by the Bloch equation. Most magnetic field variations result in unintuitive spin dynamics, which are sensitive to small deviations in the driving field. Although simplistic field variations can produce robust dynamics, the captured information content is impoverished. Here, we identify adiabaticity conditions that span a rich experiment design space with tractable dynamics. These adiabaticity conditions trap the spin dynamics in a one-dimensional subspace. Namely, the dynamics is captured by the absolute value of the magnetization, which is in a transient state, while its direction adiabatically follows the steady state. We define the hybrid state as the co-existence of these two states and identify the polar angle as the effective driving force of the spin dynamics. As an example, we optimize this drive for robust and efficient quantification of spin relaxation times and utilize it for magnetic resonance imaging of the human brain

    Computing with arrays of coupled oscillators: An application to preattentive texture discrimination

    Get PDF
    Recent experimental findings (Gray et al. 1989; Eckhorn et al. 1988) seem to indicate that rapid oscillations and phase-lockings of different populations of cortical neurons play an important role in neural computations. In particular, global stimulus properties could be reflected in the correlated firing of spatially distant cells. Here we describe how simple coupled oscillator networks can be used to model the data and to investigate whether useful tasks can be performed by oscillator architectures. A specific demonstration is given for the problem of preattentive texture discrimination. Texture images are convolved with different sets of Gabor filters feeding into several corresponding arrays of coupled oscillators. After a brief transient, the dynamic evolution in the arrays leads to a separation of the textures by a phase labeling mechanism. The importance of noise and of long range connections is briefly discussed

    Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nédélec elements

    Get PDF
    We present a parallel and high-order NĂ©dĂ©lec finite element solution for the marine controlled-source electromagnetic (CSEM) forward problem in 3-D media with isotropic conductivity. Our parallel Python code is implemented on unstructured tetrahedral meshes, which support multiple-scale structures and bathymetry for general marine 3-D CSEM modelling applications. Based on a primary/secondary field approach, we solve the diffusive form of Maxwell’s equations in the low-frequency domain. We investigate the accuracy and performance advantages of our new high-order algorithm against a low-order implementation proposed in our previous work. The numerical precision of our high-order method has been successfully verified by comparisons against previously published results that are relevant in terms of scale and geological properties. A convergence study confirms that high-order polynomials offer a better trade-off between accuracy and computation time. However, the optimum choice of the polynomial order depends on both the input model and the required accuracy as revealed by our tests. Also, we extend our adaptive-meshing strategy to high-order tetrahedral elements. Using adapted meshes to both physical parameters and high-order schemes, we are able to achieve a significant reduction in computational cost without sacrificing accuracy in the modelling. Furthermore, we demonstrate the excellent performance and quasi-linear scaling of our implementation in a state-of-the-art high-performance computing architecture.This project has received funding from the European Union's Horizon 2020 programme under the Marie Sklodowska-Curie grant agreement No. 777778. Furthermore, the research leading to these results has received funding from the European Union's Horizon 2020 programme under the ChEESE Project (https://cheese-coe.eu/ ), grant agreement No. 823844. In addition, the authors would also like to thank the support of the Ministerio de EducaciĂłn y Ciencia (Spain) under Projects TEC2016-80386-P and TIN2016-80957-P. The authors would like to thank the Editors-in-Chief and to both reviewers, Dr. Martin Cuma and Dr. Raphael Rochlitz, for their valuable comments and suggestions which helped to improve the quality of the manuscript. This work benefited from the valuable suggestions, comments, and proofreading of Dr. Otilio Rojas (BSC). Last but not least, Octavio Castillo-Reyes thanks Natalia Gutierrez (BSC) for her support in CSEM modeling with BSIT.Peer ReviewedPostprint (author's final draft

    Scalable Solutions for Automated Single Pulse Identification and Classification in Radio Astronomy

    Full text link
    Data collection for scientific applications is increasing exponentially and is forecasted to soon reach peta- and exabyte scales. Applications which process and analyze scientific data must be scalable and focus on execution performance to keep pace. In the field of radio astronomy, in addition to increasingly large datasets, tasks such as the identification of transient radio signals from extrasolar sources are computationally expensive. We present a scalable approach to radio pulsar detection written in Scala that parallelizes candidate identification to take advantage of in-memory task processing using Apache Spark on a YARN distributed system. Furthermore, we introduce a novel automated multiclass supervised machine learning technique that we combine with feature selection to reduce the time required for candidate classification. Experimental testing on a Beowulf cluster with 15 data nodes shows that the parallel implementation of the identification algorithm offers a speedup of up to 5X that of a similar multithreaded implementation. Further, we show that the combination of automated multiclass classification and feature selection speeds up the execution performance of the RandomForest machine learning algorithm by an average of 54% with less than a 2% average reduction in the algorithm's ability to correctly classify pulsars. The generalizability of these results is demonstrated by using two real-world radio astronomy data sets.Comment: In Proceedings of the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article 11, 11 page
    • 

    corecore