327 research outputs found

    A defense system against DDoS attacks by large-scale IP traceback

    Full text link
    In this paper, we present a new approach, called Flexible Deterministic Packet Marking (FDPM), to perform a large-scale IP traceback to defend against Distributed Denial of Service (DDoS) attacks. In a DDoS attack the victim host or network is usually attacked by a large number of spoofed IP packets coming from multiple sources. IP traceback is the ability to trace the IP packets to their sources without relying on the source address field of the IP header. FDPM provides many flexible features to trace the IP packets and can obtain better tracing capability than current IP traceback mechanisms, such as Probabilistic Packet Marking (PPM), and Deterministic Packet Marking (DPM). The flexibilities of FDPM are in two ways, one is that it can adjust the length of marking field according to the network protocols deployed; the other is that it can adjust the marking rate according to the load of participating routers. The implementation and evaluation demonstrates that the FDPM needs moderately only a small number of packets to complete the traceback process; and can successfully perform a large-scale IP traceback, for example, trace up to 110,000 sources in a single incident response. It has a built-in overload prevention mechanism, therefore this scheme can perform a good traceback process even it is heavily loaded.<br /

    IP traceback with deterministic packet marking DPM

    Get PDF
    In this dissertation, a novel approach to Internet Protocol (IP) Traceback - Deterministic Packet Marking (DPM) is presented. The proposed approach is scalable, simple to implement, and introduces no bandwidth and practically no processing overhead on the network equipment. It is capable of tracing thousands of simultaneous attackers during a Distributed Denial of Service (DDoS) attack. Given sufficient deployment on the Internet, DPM is capable of tracing back to the slaves for DDoS attacks which involve reflectors. Most of the processing is done at the victim. The traceback process can be performed post-mortem, which allows for tracing the attacks that may not have been noticed initially or the attacks which would deny service to the victim, so that traceback is impossible in real time. Deterministic Packet Marking does not introduce the errors for the reassembly errors usually associated with other packet marking schemes. More than 99.99% of fragmented traffic will not be affected by DPM. The involvement of the Internet service providers (ISP) is very limited, and changes to the infrastructure and operation required to deploy DPM are minimal. Deterministic Packet Marking performs the traceback without revealing the internal topology of the provider\u27s network, which is a desirable quality of a traceback scheme

    Effectiveness of Advanced and Authenticated Packet Marking Scheme for Trace back of Denial of Service Attacks

    Get PDF
    Advanced and Authenticated Packet Marking (AAPM) scheme is one of the proposed packet marking schemes for the traceback of Denial of Service (DoS) attacks. AAPM uses hash functions to reduce the storage space requirement for encoding of router information in the IP header. In this paper we take the perspective of the attacker and analyze the effects of inserting fake edges against AAPM. Since the AAPM scheme is subject to spoofing of the marking field, by inserting fake edges (corrupting the marking field) in the packets the attacker can impede traceback. In this paper, we show that the attacker can increase this distance by inserting fake edges in packets. Therefore, the attacker can make it appear to the victim that the attack was launched from a node farther away than it actually was, thus maintaining his own anonymity
    • …
    corecore