1,644 research outputs found

    A Programmable Frequency Divider Having a Wide Division Ratio Range, and Close-to-50% Output Duty-Cycle

    Get PDF
    In Radio Frequency (RF) integrated circuit design field, programmable dividers are getting more and more attentions in recent years. A programmable frequency divider can divide an input frequency by programmable ratios [1]. It is a key component of a frequency synthesizer. It also can be used to generate variable clock-signals for: switched-capacitor filters (SCFs), digital systems with different power-states, as well as multiple clock-signals on the same system-on-a-chip (SOC). These circuits need high performance programmable frequency dividers, operating at high frequencies and having wide division ratio ranges, with binary division ratio controls and 50% output duty-cycle. Different types of programmable frequency dividers are reviewed and compared. A programmable frequency divider with a wide division ratio range of (8 ~ 524287) has been reported [2]. Because the output duty-cycle of this reported divider is far from 50%, the circuit in [2] has very limited applications. The proposed design solves this problem, without compromising other advantages of the design in [2]. The proposed design is fabricated in a 0.18-μm RF CMOS process. Test results show that the output duty-cycle is 50% when the division ratio is an even number. The duty-cycle is 44.4% when the division ratio is 9. The output duty-cycle becomes closer to 50% when the division ratio is an increasing odd number. For each division ratio, the output duty-cycle remains constant, with different input frequencies from GHz down to kHz ranges, with different temperatures and power supply voltages. This thesis provides an explanation of the design details and test results. A Phase Locked-Loop (PLL) based frequency synthesizer can generate different output frequencies. A programmable frequency divider is an important component of this type of PLL. Since bandwidth is expensive, it is preferred to reduce the frequency channel distance of a frequency synthesizer. Using a fractional programmable divider, the frequency channel distance of a PLL can be reduced, without reducing the reference frequency or increasing the settling time of the PLL. A frequency synthesizer with a programmable fractional divider is designed and fabricated. A brief description of the PLL design and test results are presented in this dissertation

    Architectures for RF Frequency synthesizers

    Get PDF
    Frequency synthesizers are an essential building block of RF communication products. They can be found in traditional consumer products, in personal communication systems, and in optical communication equipment. Since frequency synthesizers are used in many different applications, different performance aspects may need to be considered in each case. The main body of the text describes a conceptual framework for analyzing the performance of PLL frequency synthesizers, and presents optimization procedures for the different performance aspects. The analysis of the PLL properties is performed with the use of the open-loop bandwidth and phase margin concepts, to enable the influence of higher-order poles to be taken into account from the beginning of the design process. The theoretical system analysis is complemented by descriptions of innovative system and building block architectures, by circuit implementations in bipolar and CMOS technologies, and by measurement results. Architectures for RF Frequency Synthesizers contains basic information for the beginner as well as in-depth knowledge for the experienced designer. It is widely illustrated with practical design examples used in industrial products.\ud Written for:\ud Electrical and electronic engineer

    A fully integrated multiband frequency synthesizer for WLAN and WiMAX applications

    Get PDF
    This paper presents a fractional N frequency synthesizer which covers WLAN and WiMAX frequencies on a single chip. The synthesizer is fully integrated in 0.35μm BiCMOS AMS technology except crystal oscillator. The synthesizer operates at four frequency bands (3.101-3.352GHz, 3.379-3.727GHz, 3.7-4.2GHz, 4.5-5.321GHz) to provide the specifications of 802.16 and 802.11 a/b/g/y. A single on-chip LC - Gm based VCO is implemented as the core of this synthesizer. Different frequency bands are selected via capacitance switching and fine tuning is done using varactor for each of these bands. A bandgap reference circuit is implemented inside of this charge pump block to generate temperature and power supply independent reference currents. Simulated settling time is around 10μsec. Total power consumption is measured to be 118.6mW without pad driving output buffers from a 3.3V supply. The phase noise of the oscillator is lower than -116.4dbc/Hz for all bands. The circuit occupies 2.784 mm2 on Si substrate, including DC, Digital and RF pads

    IUS/payload communication system simulator configuration definition study

    Get PDF
    The requirements and specifications for a general purpose payload communications system simulator to be used to emulate those communications system portions of NASA and DOD payloads/spacecraft that will in the future be carried into earth orbit by the shuttle are discussed. For the purpose of on-orbit checkout, the shuttle is required to communicate with the payloads while they are physically located within the shuttle bay (attached) and within a range of 20 miles from the shuttle after they have been deployed (detached). Many of the payloads are also under development (and many have yet to be defined), actual payload communication hardware will not be available within the time frame during which the avionic hardware tests will be conducted. Thus, a flexible payload communication system simulator is required

    Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Full text link
    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.Comment: 16 pages, 17 figures, Preprint submitted to Elsevie
    corecore