63 research outputs found

    PAC-Bayesian Analysis of the Exploration-Exploitation Trade-off

    Full text link
    We develop a coherent framework for integrative simultaneous analysis of the exploration-exploitation and model order selection trade-offs. We improve over our preceding results on the same subject (Seldin et al., 2011) by combining PAC-Bayesian analysis with Bernstein-type inequality for martingales. Such a combination is also of independent interest for studies of multiple simultaneously evolving martingales.Comment: On-line Trading of Exploration and Exploitation 2 - ICML-2011 workshop. http://explo.cs.ucl.ac.uk/workshop

    PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

    Full text link
    We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered

    PAC-Bayesian Theory Meets Bayesian Inference

    Get PDF
    We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the Bayesian marginal likelihood. That is, for the negative log-likelihood loss function, we show that the minimization of PAC-Bayesian generalization risk bounds maximizes the Bayesian marginal likelihood. This provides an alternative explanation to the Bayesian Occam's razor criteria, under the assumption that the data is generated by an i.i.d distribution. Moreover, as the negative log-likelihood is an unbounded loss function, we motivate and propose a PAC-Bayesian theorem tailored for the sub-gamma loss family, and we show that our approach is sound on classical Bayesian linear regression tasks.Comment: Published at NIPS 2015 (http://papers.nips.cc/paper/6569-pac-bayesian-theory-meets-bayesian-inference

    Generalization bounds for averaged classifiers

    Full text link
    We study a simple learning algorithm for binary classification. Instead of predicting with the best hypothesis in the hypothesis class, that is, the hypothesis that minimizes the training error, our algorithm predicts with a weighted average of all hypotheses, weighted exponentially with respect to their training error. We show that the prediction of this algorithm is much more stable than the prediction of an algorithm that predicts with the best hypothesis. By allowing the algorithm to abstain from predicting on some examples, we show that the predictions it makes when it does not abstain are very reliable. Finally, we show that the probability that the algorithm abstains is comparable to the generalization error of the best hypothesis in the class.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000005

    A General Framework for Updating Belief Distributions

    Full text link
    We propose a framework for general Bayesian inference. We argue that a valid update of a prior belief distribution to a posterior can be made for parameters which are connected to observations through a loss function rather than the traditional likelihood function, which is recovered under the special case of using self information loss. Modern application areas make it is increasingly challenging for Bayesians to attempt to model the true data generating mechanism. Moreover, when the object of interest is low dimensional, such as a mean or median, it is cumbersome to have to achieve this via a complete model for the whole data distribution. More importantly, there are settings where the parameter of interest does not directly index a family of density functions and thus the Bayesian approach to learning about such parameters is currently regarded as problematic. Our proposed framework uses loss-functions to connect information in the data to functionals of interest. The updating of beliefs then follows from a decision theoretic approach involving cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when a true likelihood is known, yet provides coherent subjective inference in much more general settings. Connections to other inference frameworks are highlighted.Comment: This is the pre-peer reviewed version of the article "A General Framework for Updating Belief Distributions", which has been accepted for publication in the Journal of Statistical Society - Series B. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin

    Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound

    Get PDF
    We investigate a stochastic counterpart of majority votes over finite ensembles of classifiers, and study its generalization properties. While our approach holds for arbitrary distributions, we instantiate it with Dirichlet distributions: this allows for a closed-form and differentiable expression for the expected risk, which then turns the generalization bound into a tractable training objective.The resulting stochastic majority vote learning algorithm achieves state-of-the-art accuracy and benefits from (non-vacuous) tight generalization bounds, in a series of numerical experiments when compared to competing algorithms which also minimize PAC-Bayes objectives -- both with uninformed (data-independent) and informed (data-dependent) priors
    • …
    corecore