2 research outputs found

    Design and Calibration of Pinch Force Measurement Using Strain Gauge for Post-Stroke Patients

    Get PDF
    Two fingers strength is an indicative measurement of pinch impairment. Conventionally, Fugl Meyer Upper Extremity Assessment (FMA-UE) is the primary standard to measure pinch strength of post-stroke survivors. In literature, the evaluation method performed by the therapist is subjective and exposed to inter-rater and intra-rater reliabilities. Recently, force-sensing resistors were implemented to measure two fingers force, but these sensors are subjected to nonlinearity, high hysteresis, and voltage drift. This paper presents a design of pinch force measurement based on the strain gauge. The pinch sensor was calibrated within a range of between 0 N to 50 N over a pinching length of 20 mm with a linearity error of 0.0123% and hysteresis of 0.513% during the loading and unloading process. The voltage drift has an average of 0.24% over 20 minutes. The pinch force measurement system reveals an objective pinch force measurements in evaluating the rehabilitation progress of post-stroke patients

    A Novel and Inexpensive Approach for Force Sensing Based on FSR Piezocapacitance Aimed at Hysteresis Error Reduction

    No full text
    Force-sensing resistors (FSRs) are inexpensive alternatives to load cells. They are suitable for applications where noninvasive devices are needed to measure force, stress, or pressure. However, they have been proved to be hysteresis prone and offer nonrepeatable readings due to their highly voltage-dependent electrical resistance. A piezocapacitive effect has been found as an alternative phenomenon that is able to offer force-dependent readings of capacitance with less hysteresis error. Also, this capacitance is not dependent on voltage, which also improves repeatability in force measurements. Since measuring capacitance is more expensive than resistance, the least costly conditioning circuitry is desired. An inexpensive alternative using an LM555 that oscillates depending on capacitance is here presented. Hysteresis and repeatability errors have been reduced for a widespread-used force-sensing resistor brand
    corecore