524 research outputs found

    Fused Filament Fabrication of Prosthetic Components for Trans-Humeral Upper Limb Prosthetics

    Get PDF
    abstract: Presented below is the design and fabrication of prosthetic components consisting of an attachment, tactile sensing, and actuator systems with Fused Filament Fabrication (FFF) technique. The attachment system is a thermoplastic osseointegrated upper limb prosthesis for average adult trans-humeral amputation with mechanical properties greater than upper limb skeletal bone. The prosthetic designed has: a one-step surgical process, large cavities for bone tissue ingrowth, uses a material that has an elastic modulus less than skeletal bone, and can be fabricated on one system. FFF osseointegration screw is an improvement upon the current two-part osseointegrated prosthetics that are composed of a fixture and abutment. The current prosthetic design requires two invasive surgeries for implantation and are made of titanium, which has an elastic modulus greater than bone. An elastic modulus greater than bone causes stress shielding and overtime can cause loosening of the prosthetic. The tactile sensor is a thermoplastic piezo-resistive sensor for daily activities for a prosthetic’s feedback system. The tactile sensor is manufactured from a low elastic modulus composite comprising of a compressible thermoplastic elastomer and conductive carbon. Carbon is in graphite form and added in high filler ratios. The printed sensors were compared to sensors that were fabricated in a gravity mold to highlight the difference in FFF sensors to molded sensors. The 3D printed tactile sensor has a thickness and feel similar to human skin, has a simple fabrication technique, can detect forces needed for daily activities, and can be manufactured in to user specific geometries. Lastly, a biomimicking skeletal muscle actuator for prosthetics was developed. The actuator developed is manufactured with Fuse Filament Fabrication using a shape memory polymer composite that has non-linear contractile and passive forces, contractile forces and strains comparable to mammalian skeletal muscle, reaction time under one second, low operating temperature, and has a low mass, volume, and material costs. The actuator improves upon current prosthetic actuators that provide rigid, linear force with high weight, cost, and noise.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot

    Doctor of Philosophy

    Get PDF
    dissertationTactile sensors are a group of sensors that are widely being developed for transduction of touch, force and pressure in the field of robotics, contact sensing and gait analysis. These sensors are employed to measure and register interactions between contact surfaces and the surrounding environment. Since these sensors have gained usage in the field of robotics and gait analysis, there is a need for these sensors to be ultra flexible, highly reliable and capable of measuring pressure and two-axial shear simultaneously. The sensors that are currently available are not capable of achieving all the aforementioned qualities. The goal of this work is to design and develop such a flexible tactile sensor array based on a capacitive sensing scheme and we call it the flexible tactile imager (FTI). The developed design can be easily multiplexed into a high-density array of 676 multi-fingered capacitors that are capable of measuring pressure and two-axial shear simultaneously while maintaining sensor flexibility and reliability. The sensitivity of normal and shear stress for the FTI are 0.74/MPa and 79.5/GPa, respectively, and the resolvable displacement and velocity are as low as 60 µm and 100 µm/s, respectively. The developed FTI demonstrates the ability to detect pressure and shear contours of objects rolling on top of it and capability to measure microdisplacement and microvelocities that are desirable during gait analysis

    An Optimal Medium for Haptics

    Full text link
    Humans rely on multimodal perception to form representations of the world. This implies that environmental stimuli must remain consistent and predictable throughout their journey to our sensory organs. When it comes to vision, electromagnetic waves are minimally affected when passing through air or glass treated for chromatic aberrations. Similar conclusions can be drawn for hearing and acoustic waves. However, tools that propagate elastic waves to our cutaneous afferents tend to color tactual perception due to parasitic mechanical attributes such as resonances and inertia. These issues are often overlooked, despite their critical importance for haptic devices that aim to faithfully render or record tactile interactions. Here, we investigate how to optimize this mechanical transmission with sandwich structures made from rigid, lightweight carbon fiber sheets arranged around a 3D-printed lattice core. Through a comprehensive parametric evaluation, we demonstrate that this design paradigm provides superior haptic transparency. Drawing an analogy with topology optimization, our solution approaches a foreseeable technological limit. This novel medium offers a practical way to create high-fidelity haptic interfaces, opening new avenues for research on tool-mediated interactions

    Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications

    Get PDF
    The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kapton™ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown films is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices

    The "Federica" hand: a simple, very efficient prothesis

    Get PDF
    Hand prostheses partially restore hand appearance and functionalities. Not everyone can afford expensive prostheses and many low-cost prostheses have been proposed. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. Generally, active prostheses use multiple motors for fingers movement and are controlled by electromyographic (EMG) signals. The "Federica" hand is a single motor prosthesis, equipped with an adaptive grasp and controlled by a force-myographic signal. The "Federica" hand is 3D printed and has an anthropomorphic morphology with five fingers, each consisting of three phalanges. The movement generated by a single servomotor is transmitted to the fingers by inextensible tendons that form a closed chain; practically, no springs are used for passive hand opening. A differential mechanical system simultaneously distributes the motor force in predefined portions on each finger, regardless of their actual positions. Proportional control of hand closure is achieved by measuring the contraction of residual limb muscles by means of a force sensor, replacing the EMG. The electrical current of the servomotor is monitored to provide the user with a sensory feedback of the grip force, through a small vibration motor. A simple Arduino board was adopted as processing unit. The differential mechanism guarantees an efficient transfer of mechanical energy from the motor to the fingers and a secure grasp of any object, regardless of its shape and deformability. The force sensor, being extremely thin, can be easily embedded into the prosthesis socket and positioned on both muscles and tendons; it offers some advantages over the EMG as it does not require any electrical contact or signal processing to extract information about the muscle contraction intensity. The grip speed is high enough to allow the user to grab objects on the fly: from the muscle trigger until to the complete hand closure, "Federica" takes about half a second. The cost of the device is about 100 US$. Preliminary tests carried out on a patient with transcarpal amputation, showed high performances in controlling the prosthesis, after a very rapid training session. The "Federica" hand turned out to be a lightweight, low-cost and extremely efficient prosthesis. The project is intended to be open-source: all the information needed to produce the prosthesis (e.g. CAD files, circuit schematics, software) can be downloaded from a public repository. Thus, allowing everyone to use the "Federica" hand and customize or improve it

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work
    corecore