2,338 research outputs found

    Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging

    Full text link
    Deep learning at scale is dominated by communication time. Distributing samples across nodes usually yields the best performance, but poses scaling challenges due to global information dissemination and load imbalance across uneven sample lengths. State-of-the-art decentralized optimizers mitigate the problem, but require more iterations to achieve the same accuracy as their globally-communicating counterparts. We present Wait-Avoiding Group Model Averaging (WAGMA) SGD, a wait-avoiding stochastic optimizer that reduces global communication via subgroup weight exchange. The key insight is a combination of algorithmic changes to the averaging scheme and the use of a group allreduce operation. We prove the convergence of WAGMA-SGD, and empirically show that it retains convergence rates similar to Allreduce-SGD. For evaluation, we train ResNet-50 on ImageNet; Transformer for machine translation; and deep reinforcement learning for navigation at scale. Compared with state-of-the-art decentralized SGD variants, WAGMA-SGD significantly improves training throughput (e.g., 2.1x on 1,024 GPUs for reinforcement learning), and achieves the fastest time-to-solution (e.g., the highest score using the shortest training time for Transformer).Comment: Published in IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), vol. 32, no. 7, pp. 1725-1739, 1 July 202

    LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning

    Get PDF
    Gradient-based distributed learning in Parameter Server (PS) computing architectures is subject to random delays due to straggling worker nodes, as well as to possible communication bottlenecks between PS and workers. Solutions have been recently proposed to separately address these impairments based on the ideas of gradient coding, worker grouping, and adaptive worker selection. This paper provides a unified analysis of these techniques in terms of wall-clock time, communication, and computation complexity measures. Furthermore, in order to combine the benefits of gradient coding and grouping in terms of robustness to stragglers with the communication and computation load gains of adaptive selection, novel strategies, named Lazily Aggregated Gradient Coding (LAGC) and Grouped-LAG (G-LAG), are introduced. Analysis and results show that G-LAG provides the best wall-clock time and communication performance, while maintaining a low computational cost, for two representative distributions of the computing times of the worker nodes.Comment: Submitte

    PPFL: A Personalized Federated Learning Framework for Heterogeneous Population

    Full text link
    Personalization aims to characterize individual preferences and is widely applied across many fields. However, conventional personalized methods operate in a centralized manner and potentially expose the raw data when pooling individual information. In this paper, with privacy considerations, we develop a flexible and interpretable personalized framework within the paradigm of Federated Learning, called PPFL (Population Personalized Federated Learning). By leveraging canonical models to capture fundamental characteristics among the heterogeneous population and employing membership vectors to reveal clients' preferences, it models the heterogeneity as clients' varying preferences for these characteristics and provides substantial insights into client characteristics, which is lacking in existing Personalized Federated Learning (PFL) methods. Furthermore, we explore the relationship between our method and three main branches of PFL methods: multi-task PFL, clustered FL, and decoupling PFL, and demonstrate the advantages of PPFL. To solve PPFL (a non-convex constrained optimization problem), we propose a novel random block coordinate descent algorithm and present the convergence property. We conduct experiments on both pathological and practical datasets, and the results validate the effectiveness of PPFL.Comment: 38 pages, 11 figure
    • …
    corecore